


CBMS-NSF REGIONAL CONFERENCE SERIES
IN APPLIED MATHEMATICS

A series of lectures on topics of current research interest in applied mathematics under the direction
of the Conference Board of the Mathematical Sciences, supported by the National Science Foundation
and published by SIAM.

G A K R H T B i R K i i o n , The Numerical Solution of Elliptic Equations
D. V. L I N D I Y , Bayesian Statistics, A Review
R S. V A R < ; A . Functional Analysis and Approximation Theory in Numerical Analysis
R R H : \ I I \ D I : R , Some Limit Theorems in Statistics
P X I K K K Bin I .VISLI -y. Weak Convergence of Measures: Applications in Probability
.1. I.. LIONS. Some Aspects of the Optimal Control of Distributed Parameter Systems
R ( H ; I : R PI-NROSI- : . Tecltniques of Differentia/ Topology in Relativity

H i . K M \N C ' u i KNOI r. Sequential Analysis and Optimal Design
.1. D I ' K H I N . Distribution Theory for Tests Based on the Sample Distribution Function
Soi I. Ri B I N O \ \ , Mathematical Problems in the Biological Sciences
P. D. L \ x . Hyperbolic Systems of Conservation Laws and the Mathematical Theory

of Shock Waves
I. .1. S o i o i . N U i i R c i . Cardinal Spline Interpolation
\\.\\ S i M i i . R . The Theory of Best Approximation and Functional Analysis
WI-.KNI R C. RHHINBOLDT, Methods of Solving Systems of Nonlinear Equations

H A N S I-'. W H I N B K R Q K R , Variational Methods for Eigenvalue Approximation
R. TYRRM.I . ROCKAI-KLI .AK, Conjugate Dtialitv and Optimization
SIR J A M K S LIGHTHILL, Mathematical Biofhtiddynamics
GI- .RAKD S A I . I O N , Theory of Indexing
C \ rnLi-:i;.N S. MORAWKTX, Notes on Time Decay and Scattering for Some Hyperbolic Problems
F. Hoi' i 'hNSTKAm, Mathematical Theories of Populations: Demographics, Genetics and Epidemics
RK H A R D ASKF;Y. Orthogonal Polynomials and Special Functions
L. H. PAYNI : . Improperly Posed Problems in Partial Differential Equations
S. ROSI:N, lectures on the Measurement and Evaluation of the Performance of Computing Systems
H H R B H R T B. KI;I .I .I :R. Numerical Solution of Two Point Boundary Value Problems
}. P. L . A S x L i . i . , The Stability of Dynamical Systems - Z. ARTSTKIN, Appendix A: Limiting Equations

and Stability of Nonautonomous Ordinary Differential Equations
I), ( ion in B AND S. A. ORS/AC,, Numerical Analysis of Spectral Methods: Theon and Applications

Pi ii R .1. H I B I - R . Robust Statistical Procedures
Hi RBI K r SOLOMON, Geometric Probability
FRI:D S. ROBF.RIS, Graph Theory and Its Applications to Problems of Society
.Ii RIS H A R I M - \ N I S . Feasible Computations and Provable Complexity Properties
Z O I I A R M A N N A , Lectures on the Logic of Computer Programming
F.I I is L. JOHNSON, Integer Programming: Facets, Subadditivitv, and Duality for Group and Semi-

Group Problems
S H N H I - I WINOGRAD, Arithmetic Complexity of Computations

J. F. C. K i N C i M A N . Mathematics of Genetic Diversity
M O R I O N F. Giu iTiN. Topics in Finite Elasticity
T I I O M X S G. K t i R f X , Approximation of Population Processes

(continued on inside back coven



Robert Endre Tarjan
Bell Laboratories
Murray Hill, New Jersey

Data Structures
and Network Algorithms

Siam.
SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS

PHILADELPHIA



Copyright ©1983 by the Society for Industrial and Applied Mathematics.

109

All rights reserved. Printed in the United States of America. No part of this book may be
reproduced, stored, or transmitted in any manner without the written permission of the
publisher. For information, write to the Society for Industrial and Applied Mathematics,
3600 University City Science Center, Philadelphia, PA 19104-2688.

Library of Congress Catalog Card Number: 83-61374

ISBN 0-89871-187-8

•
Siamumm  is a  is a registered trademark.is a



To Gail Maria Zawacki



This page intentionally left blank 



Contents

Preface vii

Chapter 1
FOUNDATIONS

1.1. Introduction 1
1.2. Computational complexity 2
1.3. Primitive data structures 7
1.4. Algorithmic notation 12
1.5. Trees and graphs 14

Chapter 2
DISJOINT SETS

2.1. Disjoint sets and compressed trees 23
2.2. An amortized upper bound for path compression 24
2.3. Remarks 29

Chapter 3
HEAPS

3.1. Heaps and heap-ordered trees 33
3.2. Cheaps 34
3.3. Leftist heaps 38
3.4. Remarks 42

Chapter 4
SEARCH TREES

4.1. Sorted sets and binary search trees 45
4.2. Balanced binary trees 48
4.3. Self-adjusting binary trees 53

Chapter 5
L I N K I N G AND CUTTING TREES

5.1. The problem of l inking and cutting trees 59
5.2. Representing trees as sets of paths 60
5.3. Representing paths as binary trees 64
5.4. Remarks 70

V



VI CONTENTS

Chapter 6
MINIMUM SPANNING TREES

6.1. The greedy method 71
6.2. Three classical algorithms 72
6.3. The round robin algorithm 77
6.4. Remarks 81

Chapter 7
SHORTEST PATHS

7.1. Shortest-path trees and labeling and scanning 85
7.2. Efficient scanning orders 89
7.3. All pairs 94

Chapter 8
NETWORK FLOWS

8.1. Flows, cuts, and augmenting paths 97
8.2. Augmenting by blocking flows  102
8.3. Finding blocking flows  104
8.4. Minimum cost flows  108

Chapter 9
MATCHINGS

9.1. Bipartite matchings and network flows  113
9.2. Alternating paths 114
9.3. Blossoms 115
9.4. Algorithms for nonbipartite matching 119

References 125



Preface

In the last fifteen years there has been an explosive growth in the field of
combinatorial algorithms. Although much of the recent work is theoretical in
nature, many newly discovered algorithms are quite practical. These algorithms
depend not only on new results in combinatorics and especially in graph theory, but
also on the development of new data structures and new techniques for analyzing
algorithms. My purpose in this book is to reveal the interplay of these areas by
explaining the most efficient known algorithms for a selection of combinatorial
problems. The book covers four classical problems in network optimization, includ-
ing a development of the data structures they use and an analysis of their running
times. This material will be included in a more comprehensive two-volume work I
am planning on data structures and graph algorithms.

My goal has been depth, precision and simplicity. I have tried to present the most
advanced techniques now known in a way that makes them understandable and
available for possible practical use. I hope to convey to the reader some appreciation
of the depth and beauty of the field of graph algorithms, some knowledge of the best
algorithms to solve the particular problems covered, and an understanding of how to
implement these algorithms.

The book is based on lectures delivered at a CBMS Regional Conference at the
Worcester Polytechnic Institute (WPI) in June, 1981. It also includes very recent
unpublished work done jointly with Dan Sleator of Bell Laboratories. I would like to
thank Paul Davis and the rest of the staff at WPI for their hard work in organizing
and running the conference, all the participants for their interest and stimulation,
and the National Science Foundation for financial support. My thanks also to Cindy
Romeo and Marie Wenslau for the diligent and excellent job they did in preparing
the manuscript, to Michael Garey for his penetrating criticism, and especially to
Dan Sleator, with whom it has been a rare pleasure to work.
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CHAPTER 1

Foundations

1.1. Introduction. In this book we shall examine efficient computer algorithms
for four classical problems in network optimization. These algorithms combine
results from two areas: data structures and algorithm analysis, and network
optimization, which itself draws from operations research, computer science and
graph theory. For the problems we consider, our aim is to provide an understanding
of the most efficient known algorithms.

We shall assume some introductory knowledge of the areas we cover. There are
several good books on data structures and algorithm analysis [1], [35], [36], [44],
[49], [58] and several on graph algorithms and network optimization [8], [11],
[21], [38], [39], [41], [50]; most of these touch on both topics. What we shall stress
here is how the best algorithms arise from the interaction between these areas.
Many presentations of network algorithms omit all but a superficial discussion of
data structures, leaving a potential user of such algorithms with a nontrivial
programming task. One of our goals is to present good algorithms in a way that
makes them both easy to understand and easy to implement. But there is a deeper
reason for our approach. A detailed consideration of computational complexity
serves as a kind of "Occam's razor": the most efficient algorithms are generally
those that compute exactly the information relevant to the problem situation. Thus
the development of an especially efficient algorithm often gives us added insight into
the problem we are considering, and the resultant algorithm is not only efficient but
simple and elegant. Such algorithms are the kind we are after.

Of course, too much detail will obscure the most beautiful algorithm. We shall
not develop FORTRAN programs here. Instead, we shall work at the level of simple
operations on primitive mathematical objects, such as lists, trees and graphs. In
§§1.3 through 1.5 we develop the necessary concepts and introduce our algorithmic
notation. In Chapters 2 through 5 we use these ideas to develop four kinds of
composite data structures that are useful in network optimization.

In Chapters 6 through 9, we combine these data structures with ideas from graph
theory to obtain efficient algorithms for four network optimization tasks: finding
minimum spanning trees, shortest paths, maximum flows, and maximum match-
ings. Not coincidentally, these are four of the five problems discussed by Klee in his
excellent survey of network optimization [34]. Klee's fifth problem, the minimum
tour problem, is one of the best known of the so-called "NP-complete" problems; as
far as is known, it has no efficient algorithm. In 1.2, we shall review some of the
concepts of computational complexity, to make precise the idea of an efficient
algorithm and to provide a perspective on our results (see also [53], [55]).

We have chosen to formulate and solve network optimization problems in the
setting of graph theory. Thus we shall omit almost all mention of two areas that
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2 CHAPTER 1

provide alternative approaches: matroid theory and linear programming. The books
of Lawler [38] and Papadimitriou and Steiglitz [41] contain information on these
topics and their connection to network optimization.

1.2. Computational complexity. In order to study the efficiency of algorithms,
we need a model of computation. One possibility is to develop a denotational
definition of complexity, as has been done for program semantics [19], but since this
is a current research topic we shall proceed in the usual way and define complexity
operationally. Historically the first machine model proposed was the Turing
machine [56]. In its simplest form a Turing machine consists of a finite state
control, a two-way infinite memory tape divided into squares, each of which can
hold one of a finite number of symbols, and a read/write head. In one step the
machine can read the contents of one tape square, write a new symbol in the square,
move the head one square left or right, and change the state of the control.

The simplicity of Turing machines makes them very useful in high-level theoreti-
cal studies of computational complexity, but they are not realistic enough to allow
accurate analysis of practical algorithms. For this purpose a better model is the
random-access machine [1], [14]. A random-access machine consists of a finite
program, a finite collection of registers, each of which can store a single integer or
real number, and a memory consisting of an array of n words, each of which has a
unique address between 1 and n (inclusive) and can hold a single integer or real
number. In one step, a random-access machine can perform a single arithmetic or
logical operation on the contents of specified registers, fetch into a specified register
the contents of a word whose address is in a register, or store the contents of a
register in a word whose address is in a register.

A similar but somewhat less powerful model is the pointer machine [35], [46],
[54]. A pointer machine differs from a random-access machine in that its memory
consists of an extendable collection of nodes, each divided into a fixed number of
named fields. A field can hold a number or a pointer to a node. In order to fetch
from or store into one of the fields in a node, the machine must have in a register a
pointer to the node. Operations on register contents, fetching from or storing into
node fields, and creating or destroying a node take constant time. In contrast to the
case with random-access machines, address arithmetic is impossible on pointer
machines, and algorithms that require such arithmetic, such as hashing [36], cannot
be implemented on such machines. However, pointer machines make lower bound
studies easier, and they provide a more realistic model for the kind of list-processing
algorithms we shall study. A pointer machine can be simulated by a random-access
machine in real time. (One operation on a pointer machine corresponds to a constant
number of operations on a random-access machine.)

All three of these machine models share two properties: they are sequential, i.e.,
they carry out one step at a time, and deterministic, i.e., the future behavior of the
machine is uniquely determined by its present configuration. Outside this section we
shall not discuss parallel computation or nondeterminism, even though parallel
algorithms are becoming more important because of the novel machine architec-
tures made possible by very large scale integration (VLSI), and nondeterminism of
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FOUNDATIONS 3

various kinds has its uses in both theory and practice [1], [19], [23]. One important
research topic is to determine to what extent the ideas used in sequential,
deterministic computation carry over to more general computational models.

An important caveat concerning random-access and pointer machines is that if
the machine can manipulate numbers of arbitrary size in constant time, it can
perform hidden parallel computation by encoding several numbers into one. There
are two ways to prevent this. Instead of counting each operation as one step (the
uniform cost measure), we can charge for an operation a time proportional to the
number of bits needed to represent the operands (the logarithmic cost measure}.
Alternatively we can limit the size of the integers we allow to those representable in
a constant times log n bits, where n is a measure of the input size, and restrict the
operations we allow on real numbers. We shall generally use the latter approach; all
our algorithms are implementable on a random-access or pointer machine with
integers of size at most nc for some small constant c with only comparison, addition,
and sometimes multiplication of input values allowed as operations on real numbers,
with no clever encoding.

Having picked a machine model, we must select a complexity measure. One
possibility is to measure the complexity of an algorithm by the length of its program.
This measure is static, i.e., independent of the input values. Program length is the
relevant measure if an algorithm is only to be run once or a few times, and this
measure has interesting theoretical uses [10], [37], [42], but for our purposes a
better complexity measure is a dynamic one, such as running time or storage space
as a function of input size. We shall use running time as our complexity measure;
most of the algorithms we consider have a space bound that is a linear function of
the input size.

In analyzing running times we shall ignore constant factors. This not only
simplifies the analysis but allows us to ignore details of the machine model, thus
giving us a complexity measure that is machine independent. As Fig. 1.1 illustrates,
for large enough problem sizes the relative efficiencies of two algorithms depend on
their running times as an asymptotic function of input size, independent of constant
factors. Of course, what "large enough" means depends upon the situation; for some
problems, such as matrix multiplication [15], the asymptotically most efficient
known algorithms beat simpler methods only for astronomical problem sizes. The
algorithms we shall consider are intended to be practical for moderate problem
sizes. We shall use the following notation for asymptotic running times: If/and g
are functions of nonnegative variables n, m, • • • we write "f is O(g)" if there are
positive constants c1 and c l such that/(n, m , • • • ) c\g(n, m, • • • ) + c2 for all
values of n, m, • • • . We write "/ is fi " if g is (/), and "f is 0(g)" if/is O(g)
and (g)•

We shall generally measure the running time of an algorithm as a function of the
worst-case input data. Such an analysis provides a performance guarantee, but it
may give an overly pessimistic estimate of the actual performance if the worst case
occurs rarely. An alternative is an average-case analysis. The usual kind of
averaging is over the possible inputs. However, such an analysis is generally much
harder than worst-case analysis, and we must take care that our probability
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FIG. 1.1. Running time estimates. One step takes one microsecond, Ign denotes Iog2n.

distribution accurately reflects reality. A more robust approach is to allow the
algorithm to make probabilistic choices. Thus for worst-case input data we average
over possible algorithms. For certain problem domains, such as table look-up [9],
[57], string matching [31], and prime testing [3], [43], [48], such randomized
algorithms are either simpler or faster than the best known deterministic
algorithms. For the problems we shall consider, however, this is not the case.

A third kind of averaging is amortization. Amortization is appropriate in
situations where particular algorithms are repeatedly applied, as occurs with
operations on data structures. By averaging the time per operation over a worst-case
sequence of operations, we sometimes can obtain an overall time bound much
smaller than the worst-case time per operation multiplied by the number of
operations. We shall use this idea repeatedly.

By an efficient algorithm we mean one whose worst-case running time is bounded
by a polynomial function of the input size. We call a problem tractable if it has an
efficient algorithm and intractable otherwise, denoting by P the set of tractable
problems. Cobham [12] and Edmonds [20] independently introduced this idea.
There are two reasons for its importance. As the problem size increases, polynomial-
time algorithms become unusable gradually, whereas nonpolynomial-time algo-
rithms have a problem size in the vicinity of which the algorithm rapidly becomes
completely useless, and increasing by a constant factor the amount of time allowed
or the machine speed doesn't help much. (See Fig. 1.2.) Furthermore, efficient
algorithms usually correspond to some significant structure in the problem, whereas
inefficient algorithms often amount to brute-force search, which is defeated by
combinatorial explosion.

COMPLEXITY
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Figure 1.3 illustrates what we call the "spectrum of computational complexity," a
plot of problems versus the complexities of their fastest known algorithms. There
are two regions, containing the tractable and intractable problems. At the top of the
plot are the undecidable problems, those with no algorithms at all. Lower are the
problems that do have algorithms but only inefficient ones, running in exponential
or superexponential time. These intractable problems form the subject matter of
high-level complexity. The emphasis in high-level complexity is on proving non-

FIG. 1.3. The spectrum of computational complexity.
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6 CHAPTER 1

polynomial lower bounds on the time or space requirements of various problems.
The machine model used is usually the Turing machine; the techniques used,
simulation and diagonalization, derive from Godel's incompleteness proof [24], [40]
and have their roots in classical self-reference paradoxes.

Most network optimization problems are much easier than any of the problems
for which exponential lower bounds have been proved; they are in the class NP of
problems solvable in polynomial time on a nondeterministic Turing machine. A
more intuitive definition is that a problem is in NP if it can be phrased as a yes-no
question such that if the answer is "yes" there is a polynomial-length proof of this.
An example of a problem in NP is the minimum tour problem: given n cities and
pairwise distances between them, find a tour that passes through each city once,
returns to the starting point, and has minimum total length. We can phrase this as a
yes-no question by asking if there is a tour of length at most x; a "yes" answer can
be verified by exhibiting an appropriate tour.

Among the problems in NP are those that are hardest in the sense that if one has a
polynomial-time algorithm then so does every problem in NP. These are the
NP-complete problems. Cook [13] formulated this notion and illustrated it with
several NP-complete problems; Karp [29], [30] established its importance by
compiling a list of important problems, including the minimum tour problem, that
are NP-complete. This list has now grown into the hundreds; see Garey and
Johnson's book on NP-completeness [23] and Johnson's column in the Journal of
Algorithms [28]. The NP-complete problems lie on the boundary between intract-
able and tractable. Perhaps the foremost open problem in computational complexity
is to determine whether P = NP; that is, whether or not the NP-complete problems
have polynomial-time algorithms.

The problems we shall consider all have efficient algorithms and thus lie within
the domain of low-level complexity, the bottom half of Fig. 1.3. For such problems
lower bounds are almost nonexistent; the emphasis is on obtaining faster and faster
algorithms and in the process developing data structures and algorithmic techniques
of wide applicability. This is the domain in which we shall work.

Although the theory of computational complexity can give us important informa-
tion about the practical behavior of algorithms, it is important to be aware of its
limitations. An example that illustrates this is linear programming, the problem of
maximizing a linear function of several variables constrained by a set of linear
inequalities. Linear programming is the granddaddy of network optimization
problems; indeed, all four of the problems we consider can be phrased as linear
programming problems. Since 1947, an effective, but not efficient algorithm for this
problem has been known, the simplex method [ 16]. On problems arising in practice,
the simplex method runs in low-order polynomial time, but on carefully constructed
worst-case examples the algorithm takes an exponential number of arithmetic
operations. On the other hand, the newly discovered ellipsoid method [2], [33],
which amounts to a very clever «-dimensional generalization of binary search, runs
in polynomial time with respect to the logarithmic cost measure but performs very
poorly in practice [17]. This paradoxical situation is not well understood but is
perhaps partially explained by three observations: (i) hard problems for the simplex
method seem to be relatively rare; (ii) the average-case running time of the ellipsoid
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method seems not much better than that for its worst case; and (iii) the ellipsoid
method needs to use very high precision arithmetic, the cost of which the logarith-
mic cost measure underestimates.

1.3. Primitive data structures. In addition to integers, real numbers and bits (a
bit is either true or false), we shall regard certain more complicated objects as
primitive. These are intervals, lists, sets, and maps. An interval [ j . . k] is a
sequence of integers 7, j + 1 , • • • , K . We extend the notation to represent
arithmetic progressions: [j, k . . 1] denotes the sequence j,j + j + 2A, • • • ,j +
i where = k — j and / = L(l — j') (If* is a real number, LxJ denotes the
largest integer not greater than x and [x] denotes the smallest integer not less than
x.) If i the progression is empty; if 7 = k, the progression is undefined. We use £
to denote membership and to denote nonmembership in intervals, lists and sets;
thus for instance / [7 .. k] means i is an integer such thaty i k.

A list q = [x, x2 • • • , xn] is a sequence of arbitrary elements, some of which
may be repeated. Element x1, is the head of the list and xn is the tail; x, and xn are the
ends of the list. We denote the size n of the list by | q \. An ordered pair [x,, x2] is a
list of two elements; [ ] denotes the empty list of no elements. There are three
fundamental operations on lists:

Access. Given a list q = [x1,, x2, • • • , xn] and an integer i, return the ith element
q(i) = x,on the list. If i [1 .. n],q(i) has the special value null.

Sublist. Given a list q = [x1,, x2, • • • , xn] and a pair of integers i and j, return the
list q[i. .j] = [xi, xi+1, • • • , X j ] . If 7 is missing or greater than n it has an
implied value of n; similarly if i is missing or less than one it has an implied
value of 1. Thus for instance q[3 .. ] = [x3, x4, • • • , xn]. We can extend this
notation to denote sublists corresponding to arithmetic progressions.

Concatenation. Given two lists q = [x,, x2, • • • , xn] and r = [y1, y2, • • • ,ym],
return their concatenation q & r = [x, ,x2, • • • , xntyl,y2, • • • ,ym]-

We can represent arbitrary insertion and deletion in lists by appropriate combina-
tions of sublist and concatenation. Especially important are the special cases of
access, sublist and concatenation that manipulate the ends of a list:

Access head. Given a list q, return q(\).
Push. Given a list q and an element x, replace q by [x] & q.
Pop. Given a list q, replace q by q[2 ..].
Access tail. Given a list q, return q(\ q |).
Inject. Given a list q and an element x, replace q by q & [x].
Eject. Given a list q, replace q by q[ . . \ q \ - 1 ].

A list on which the operations access head, push and pop are possible is a stack.
With respect to insertion and deletion a stack functions in a last-in, first-out
manner. A list on which access head, inject and pop are possible is a queue. A queue
functions in a first-in, first-out manner. A list on which all six operations are
possible is a deque (double-ended queue). If all operations but eject are possible the
list is an output-restricted deque. (See Fig. 1.4.)
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FIG. 1.4. Types of lists, (a) Stack, (b) Queue, (c) Output-restricted deque, (d) Deque.

A set s = (x,, x2, • • • , xn] is a collection of distinct elements. Unlike a list, a set
has no implied ordering of its elements. We extend the size notation to sets; thus
| s | = n. We denote the empty set by { }. The important operations on sets are union
u, intersection , and difference -: if s and t are sets, s - Ms the set of all elements
in s but not in t. We extend difference to lists as follows: if q is a list and s a set, q - s
is the list formed from q by deleting every copy of every element in s.

A map f = {[x 1y 1 ] , [x2,y2]. • • • , [x n ,y n ]} is a set of ordered pairs no two having
the same first coordinate (head). The domain of / is the set of first coordinates,
domain (/) = {x1, x2, • • • , xn}. The range of f is the set of second coordinates
(tails), range (/) = {y1, y2, • • • , yn\. We regard/as a function from the domain to
the range; the value /(*,) of/at an element x, of the domain is the corresponding
second coordinate^,. If x £ domain (/),/(*) = null. The size |/|of/is the size of its
domain. The important operations on functions are accessing and redefining
function values. The assignment/(jt) = y deletes the pair [x, /(*)] (if any) from f
and adds the pair [x, y]. The assignment/(x) == null merely deletes the pair [x,
f ( x ) } (if any) from/. We can regard a list q as a map with domain [1 . . | q \].

There are several good ways to represent maps, sets, and lists using arrays and
linked structures (collections of nodes interconnected by pointers). We can repre-
sent a map as an array of function values (if the domain is an interval or can be
easily transformed into an interval or part of one) or as a node field (if the domain is
a set of nodes). These representations correspond to the memory structures of
random-access and pointer machines respectively; they allow accessing or redefin-
ing f(x) given x in O(\) time. We shall use functional notation rather than dot
notation to represent the values of node fields; depending upon the circumstances

f ( x ) may represent the value of map/at x, the value stored in position x of array/,
the value of field/in node x, or the value returned by the function/when applied to
x. These are all just alternative ways of representing functions. We shall use a small
circle to denote function composition: /° g denotes the function defined by (/ ° g)
(X) =/(£(*))•

8
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We can represent a set by using its characteristic function over some universe or
by using one of the list representations discussed below and ignoring the induced
order of the elements. If s is a subset of a universe U, its characteristic function x,
over U is x, (x) = true if x c S, false if x c U - S. We call the value of xs, (*) the
membership bit of x (with respect to s). A characteristic function allows testing for
membership in 0(1) time and can be updated in 0(1) time under addition or
deletion of a single element. We can define characteristic functions for lists in the
same way. Often a characteristic function is useful in combination with another set
or list representation. If we need to know the size of a set frequently, we can
maintain the size as an integer; updating the size after a one-element addition or
deletion takes O( 1) time.

We can represent a list either by an array or by a linked structure. The easiest
kind of list to represent is a stack. We can store a stack q in an array aq, maintaining
the last filled position as an integer k. The correspondence between stack and array
is q(i) = aq (k + \ - /); if k = 0 the stack is empty. With this representation each of
the stack operations takes 0(1) time. In addition, we can access and even redefine
arbitrary positions in the stack in 0(1) time. We can extend the representation to
deques by keeping two integers j and k indicating the two ends of the deque and
allowing the deque to "wrap around" from the back to the front of the array. (See
Fig. 1.5.) The correspondence between deque and array is q(i) = aq(((j + i — 2)
mod ri) + 1), where n is the size of the array and x mod y denotes the remainder of x
when divided by y. Each of the deque operations takes 0( 1) time. I f the elements of
the list are nodes, it is sometimes useful to have a field in each node called a list
index indicating the position of the node in the array. An array representation of a
list is a good choice if we have a reasonably tight upper bound on the maximum size
of the list and we do not need to perform many sublist and concatenate operations;
such operations may require extensive copying.

There are many ways to represent a list as a linked structure. We shall consider
eight, classified in three ways: as endogenous or exogenous, single or double and
linear or circular. (See Fig. 1.6.) We call a linked data structure defining an
arrangement of nodes endogenous if the pointers forming the "skeleton" of the
structure are contained in the nodes themselves and exogenous if the skeleton is
outside the nodes. In a single list, each node has a pointer to the next node on the list

FIG. 1.5. Array representation of lists, (a) Stack, (b) Deque that has wrapped around the array.

Apave
Highlight

Apave
Highlight
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FIG. 1.6. Linked representations of lists. Missing pointers are null, (a) Single linear, (b) Single
circular, (c) Double linear, (d) Double circular.

(its successor); in a double list, each node also has a pointer to the previous node (its
predecessor). In a linear list, the successor of the last node is null, as is the
predecessor of the first node; in a circular list, the successor of the last node is the
first node and the predecessor of the first node is the last node. We access a linear
list by means of a pointer to its head, a circular list by means of a pointer to its tail.

Figure 1.7 indicates the power of these representations. A single linear list
suffices to represent a stack so that each access head, push, or pop operation takes
0(1) time. A single circular list suffices for an output-restricted deque and also
allows concatenation in O( 1) time if we allow the concatenation to destroy its inputs.
(All our uses of concatenation will allow this.) Single linking allows insertion of a
new element after a specified one or deletion of the element after a specified one in
O(\) time; to have this capability if the list is exogenous we must store in each list
element an inverse pointer indicating its position in the list. Single linking also
allows scanning the elements of a list in order in O( 1) time per element scanned.

Double linking allows inserting a new element before a given one or deleting any
element. It also allows scanning in reverse order. A double circular list suffices to
represent a deque.
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FIG. 1.7. The power of list representations. "Yes" denotes an O (1 )-time operation (O (1) time per
element for forward and backward scanning), (a) If the representation is exogenous, insertion and
deletion other than at the ends of the list require the position of the element. Inverse pointers furnish
this information, (b) Reversal requires a modified representation. (See Fig. 1.8.)

Endogenous structures are more space-efficient than exogenous ones, but they
require that a given element be in only one or a fixed number of structures at a time.
The array representation of a list can be regarded as an exogenous structure.

Some variations on these representations are possible. Instead of using circular
linking, we can use linear linking but maintain a pointer to the tail as well as to the
head of a list. Sometimes it is useful to make the head of a list a special dummy node
called a header; this eliminates the need to treat the empty list as a special case.

Sometimes we need to be able to reverse a list, i.e. replace q = [x,, x2, • • • , xn]
by reverse (q) = [xn, xn_\, • • • , x } ] . To allow fast reversal we represent a list by a
double circular list accessed by a pointer to the tail, with the following modification:
each node except the tail contains two pointers, to its predecessor and successor, but
in no specified order; only for the tail is the order known. (See Fig. 1.8.) Since any
access to the list is through the tail, we can establish the identity of predecessors and
successors as nodes are accessed in O( 1) time per node. This representation allows
all the deque operations, concatenation and reversal to be performed in O( 1) time
per operation.

FIG. 1.8. Endogenous representation of a reversible list.
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1.4. Algorithmic notation. To express an algorithm we shall use either a
step-by-step description or a program written in an Algol-like language. Our
language combines Dijkstra's guarded command language [19] and SETL [32].
We use ":=" to denote assignment and ";" as a statement separator. We allow
sequential and parallel assignment: "x, ;= x2 = • • • =xn •= expression" assigns
the value of the expression to x„, x„_, , • • • , * , ; ".x1, x2, • • • , xn •= exp1,
exp2, • ' • , exp" simultaneously assigns the value of expi to xi, for i [1 .. n]. The
double arrow denotes swapping: is equivalent to "x, y-= y,x."

We use three control structures: Dijkstra's if • • • fi and do • • • od, and a
for • • • rof statement.

The form of an if statement is:

The effect of this statement is to cause the conditions to be evaluated and the
statement list for the first true condition to be executed; if none of the conditions is
true none of the statement lists is executed. We use a similar syntax for defining
conditional expressions: if condition1 exp1 \ • • • | conditionn expn fi evaluates
to expi if condition, is the first true condition. (Dijkstra allows nondeterminism in if
statements; all our programs are written to be correct for Dijkstra's semantics.)

The form of a do statement is:

The effect of this statement is similar to that of an if except that after the execution
of a statement list the conditions are reevaluated, the appropriate statement list is
executed, and this is repeated until all conditions evaluate to false.

The form of a for statement is:

This statement causes the statement list to be evaluated once for each value of the
iterator. An iterator has the form x e s, where x is a variable and s is an interval,
arithmetic progression, list, or set; the statement list is executed | s \ times, once for
each element x in s. If s is a list, successive values of x are in list order; similarly if s
is an interval or arithmetic progression. If s is a set, successive values of x are in
unpredictable order. We allow the following abbreviations: "x = j .. k" is equiva-
lent to x [ j . . k], "x = 7, k .. /" is equivalent to "x [ j, k . . /]," and "for x s:
condition1 statement list1 | • • • | conditionn, statement listn rof" is equivalent
to "for x s if condition1 statement listl | • • • | condition,, —•> statement listn fi
rof."

We allow procedures, functions (procedures that return a nonbit result) and
predicates (procedures that return a bit result). The return statement halts execu-
tion of a procedure and returns execution to the calling procedure; return expression
returns the value of the expression from a function or predicate. Parameters are
called by value unless otherwise indicated; the other options are result (call by
result) and modifies (call by value and result). (When a parameter is a set, list, or
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similar structure, we assume that what is passed is a pointer to an appropriate
representation of the structure.) The syntax of procedure definitions is

procedure name (parameter list); statement list end for a procedure,
type function name (parameter list); statement list end for a function, and
predicate name (parameter list); statement list end for a predicate.

We allow declaration of local variables within procedures. Procedure parameters
and declared variables have a specified type, such as integer, real, bit, map, list, set,
or a user-defined type. We shall be somewhat loose with types; in particular we shall
not specify a mechanism for declaring new types and we shall ignore the issue of
type checking.

We regard null as a node capable of having fields. We assume the existence of
certain buiit-in functions. In particular, create type returns a new node of the
specified type. Function min s returns the smallest element in a set or list s of
numbers; min s by key returns the element in s of minimum key, where s is a set or
list of nodes and key is a field or function. Function max is similar. Function sort 5
returns a sorted list of the elements in a set or list s of numbers; sort 5 by key returns
a list of the elements in s sorted by key, where s is a set or list of nodes and key is a
field or function.

As an example of the use of our notation we shall develop and analyze a procedure
that implements sort s. For descriptive purposes we assume s is a list. Our algorithm
is called list merge sort [36]; it sorts s by repeatedly merging sorted sublists. The
program merge (s, t), defined below, returns the sorted list formed by merging
sorted lists s and t:

list function merge (list s, t);
return if s =[] /

| r - [ ] s
\s [ ]and t [ 1 and s(l ) t(I)

[s(1)]& merge ( s [2 . . ] , t )
s [ ]and t [ ] and s ( 1 ) > r ( l )

[ t ( I ) ] & merge ( s , t [ 2 . . ] )
fi

end merge;

This program merges s and / by scanning the elements in the two lists in
nondecreasing order; it takes O(\ s \ + \ t \) time. To sort a list s, we make each of its
elements into a single-element list, place all the sublists in a queue, and repeat the
following step until the queue contains only one list, which we return:

MERGE STEP. Remove the first two lists from the front of the queue, merge them,
and add the result to the rear of the queue.

The following program implements this method:

list function sort (list s);
list queue;
queue = [ ];
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for x s queue == queue & [[x]] rof;
do | queue \ 2 queue == queue[3 . .] & merge (queue (1), queue (2)) od;
return if queue = [ ] [ ]| queue [ ] queue (1) fi

end;

Each pass through the queue takes O(| 51) time and reduces the number of lists on
the queue by almost a factor of two, from | queue \ to l"| queue \ /2\ . Thus there are
<9(log|5|)' passes and the total time to sort is <9(|s | log|s\), which is minimum to
within a constant factor for sorting by comparison [36]. If this method is
implemented iteratively instead of recursively, it is an efficient, practical way to sort
lists. A further improvement in efficiency can be obtained by initially breaking s
into sorted sublists instead of singletons: if s = [x1 • • • , xn„], we split s between
each pair of elements xi, xi+1 such that x, > x / + l . This method is called natural list
merge sort [36].

1.5. Trees and graphs. The main objects of our study are trees and graphs. Our
definitions are more or less standard; for further information see any good text on
graph theory [4], [6], [7], [25], [26]. A graph G - [V, E] consists of a vertex set V
and an edge set E. Either G is undirected, in which case every edge is an unordered
pair of distinct vertices, or G is directed, in which case every edge is an ordered pair
of distinct vertices. In order to avoid repeating definitions, we shall denote by (v, w)
either an undirected edge \v, w} or a directed edge [v, w], using the context to resolve
the ambiguity. We do not allow loops (edges of the form (v, v)) or multiple edges,
although all our algorithms extend easily to handle such edges. If {v, w} is an
undirected edge, v and w are adjacent. A directed edge [v, w] leaves or exits v and
enters w, the edge is out of v and into w. If (v, w) is any edge, v and w are its ends;
(v, w) is incident to v and w, and v and w are incident to (v, w). We extend the
definition of incidence to sets of vertices as follows: If S is a set of vertices, an edge is
incident to 5* if exactly one of its ends is in 5". A graph is bipartite if there is a subset
51 of the vertices such that every edge is incident to 5". (Every edge has one end in S
and one end in V - S.) If v is a vertex in an undirected graph, its degree is the
number of adjacent vertices. If v is a vertex in a directed graph, its in-degree is the
number of edges [u, v] and its out-degree is the number of edges [v, w].

If G is a directed graph, we can convert it to an undirected graph called the
undirected version of G by replacing each edge [v, w] by {v, w} and removing
duplicate edges. Conversely, we obtain the directed version of an undirected graph
G by replacing every edge {v, w} by the pair of edges [v, w] and [w, v]. If G1 =
[v1, E1] and G2 = [K2, E2] are graphs, both undirected or both directed, G\ is a
subgraph of G2 if V\ c V2 and E\ c E2. G\ is a spanning subgraph of G2 if V\ = V2. G,
is the subgraph of G2 induced by the vertex set V] if E, contains every edge (v, w)
c E2 such that \v, w} c K,. G, is the subgraph of G2 induced by the edge set E\ if K,
contains exactly the ends of the edges in E,. If G = [ K, E] is a graph and S is a subset
of the vertices, the condensation of G with respect to S is the graph formed by

'We shall use Ig n to denote the binary logarithm of n. In situations where the base of the algorithm is
irrelevant, as inside "O" we use log n.
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condensing S to a single vertex; i.e., G is the graph with vertex set V - S {jc},
where x is a new vertex, and edge set \(v', w') \v' w' and (f, w) £}, where v' = v if
v S, v'= xitvcS.

A path in a graph from vertex v1, to vertex vk is a list of vertices [v 1 , v2, • • • , vk]
such that (vi v i + l ) is an edge for i [1 .. k - 1]. The path contains vertex vi for /
[1 .. k] and edge (vi, v l+1) for i [1 .. k - 1] and avoids all other vertices and
edges. Vertices v1, and vk are the ends of the path. The path is simple if all its vertices
are distinct. If the graph is directed, the path is a cycle if k > 1 and v1 = vk, and a
simple cycle if in addition v1,, v2, • • • •. v k_ 1 are distinct. If the graph is undirected,
the path is a cycle if k > 1, v1 = vk and no edge is repeated, and a simple cycle if in
addition v1, v2, • • • , vk_t are distinct. A graph without cycles is acyclic. If there is a
path from a vertex v to a vertex w then w is reachable from y.

An undirected graph G is connected if every vertex is reachable from every other
vertex and disconnected otherwise. The maximal connected subgraphs of G are its
connected components; they partition the vertices of G. We extend this definition to
directed graphs as follows: If G is directed, its connected components are the
subgraphs induced by the vertex sets of the connected components of the undirected
version of G.

When analyzing graph algorithms we shall use n to denote the number of vertices
and m to denote the number of edges. In an undirected graph m ^ n(n - 1 )/2; in a
directed graph m ^ n (n - 1). A graph is dense if m is large compared to n and
sparse otherwise; the exact meaning of these notions depends upon the context. We
shall assume that n and m are positive and m = fi(«); thus n + m = O(m). (If w <
n/2 the graph is disconnected, and we can apply our graph algorithms to the
individual connected components.)

We shall generally represent a graph by the set of its vertices and for each vertex
one or two sets of incident edges. If the graph is directed, we use the sets out(v) =
{[v, w] e E} and possibly in (v) = {[u, v] e E} for v e V. If the graph is undirected, we
use edges (v) = {{p, w} c E\ for v & V. Alternatively, we can represent an undirected
graph by a representation of its directed version. We can also represent a graph by
using an n x n adjacency matrix A defined by A(v, w) = true if (v, w) is an edge,
false otherwise. Unfortunately, storing such a matrix takes fi(«2) space and using it
to solve essentially any nontrivial graph problem takes fi(/i2) time [45], which is
excessive for sparse graphs.

A free tree T is an undirected graph that is connected and acyclic. A free tree of n
vertices contains n - \ edges and has a unique simple path from any vertex to any
other. When discussing trees we shall restrict our attention to simple paths.

A rooted tree is a free tree T with a distinguished vertex r, called the root. If v and
w are vertices such that v is on the path from r to w, v is an ancestor of w and w is a
descendant of v. If in addition v w, v is a proper ancestor ofw and w is a proper
descendant of v. If v is a proper ancestor of w and v and w are adjacent, v is the
parent of w and w is a child of v. Every vertex v except the root has a unique parent,
generally denoted by p(v), and zero or more children; the root has no parent and
zero or more children. We denote by p*(v),p3(v), • - • the grandparent, greatgrand-
parent, • • • of v. A vertex with no children is a leaf. When appropriate we shall
regard the edges of a rooted tree as directed, either from child to parent or from
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parent to child. We can represent a rooted tree by storing with each vertex its parent
or its set of children or (redundantly) both.

We define the depth of a vertex v in a rooted tree recursively by depth (v) = 0 if v
is the root, depth (v) = depth (p(v)) + 1 otherwise. Similarly we define the height
of a vertex v by height (v) = 0 if v is a leaf, height (v) = max {height (w) | w is a child
of v} + 1 otherwise. The subtree rooted at vertex v is the rooted tree consisting of the
subgraph induced by the descendants of v, with root v. The nearest common
ancestor of two vertices v and w is the deepest vertex that is an ancestor of both.

A tree traversal is the process of visiting each of the vertices in a rooted tree
exactly once. There are several systematic orders in which we can visit the vertices.
The following recursive procedure defines preorder and postorder. If we execute
traverse (r), where r is the tree root, the procedure applies an arbitrary procedure
previsit to the vertices in preorder and an arbitrary procedure postvisit to the
vertices in postorder. (See Fig. 1.9.)

procedure traverse (vertex v);
previsit (v);
for w children(v) traverse(w) rof;
postvisit (v)

end traverse;

In preorder, parents are visited before children; in postorder the reverse is true.
Another useful ordering is breadth-first order, obtained by visiting the root and
then repeating the following step until all vertices are visited: visit an unvisited child
of the least recently visited vertex with an unvisited child. We can implement a
breadth-first traversal by storing the visited vertices (or their unvisited children) on
a queue. Each of these three kinds of traversal takes O(n) time if the tree is
represented by sets of children; in each case the exact ordering obtained depends
upon the order in which the children of each vertex are selected.

A full binary tree is a rooted tree in which each vertex v has either two children,
its left child left (v) and its right child right (v), or no children. A vertex with two
children is internal; a vertex with no children is external. If v is an internal vertex,
its left subtree is the subtree rooted at its left child and its right subtree is the

FIG. 1.9. Tree traversal. First number at a vertex is preorder, second is postorder.
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subtree rooted at its right child. A binary tree is obtained from a full binary tree by
discarding all the external nodes; in a binary tree each node has a left and right child
but either or both may be missing (which we generally denote by null.) On binary
trees we define preorder, postorder, and another ordering, inorder or symmetric
order, recursively as follows:

procedure traverse (vertex v);
previsit (v)\
if left (v) null traverse (left (v));
invisit (v);
of right (v) null traverse (right (v));
postvisit (v)

end traverse;

We shall use trees extensively as data structures. When doing so we shall call the
tree vertices nodes; we generally think of them as being nodes in the memory of a
oointer machine.

A forest is a vertex-disjoint collection of trees. A spanning tree of a graph G is a
spanning subgraph of G that is a tree (free if G is undirected, rooted with edges
directed from parent to child if G is directed).

The idea of a tree traversal extends to graphs. If G is a graph and s is an arbitrary
start vertex, we carry out a search of G starting from 5 by visiting s and then
repeating the following step until there is no unexamined edge (v, w) such that v has
been visited:

SEARCH STEP. Select an unexamined edge (v, w) such that v has been visited and
examine it, visiting w if w is unvisited.

Such a search visits each vertex reachable from S exactly once and examines
exactly once each edge (v, w) such that v is reachable from s. The search also
generates a spanning tree of the subgraph induced by the vertices reachable from s,
defined by the set of edges (v, w) such that examination of (v, w) causes w to be
visited.

The order of edge examination defines the kind of search. In a depth-first search,
we always select an edge (v, w) such that v was visited most recently. In a
breadth-first search, we always select an edge (v, w) such that v was visited least
recently. (See Fig. 1.10.)

Both depth-first and breadth-first searches take O(m) time if implemented
properly. We can implement depth-first search by using a stack to store eligible
unexamined edges. Equivalently, we can use recursion, generalizing the program for
preorder and postorder tree traversal. If G is a directed graph represented by out
sets, the procedure call dfs (s) will carry out a depth-first search of G1 starting from
vertex s, where dfs is defined as follows:

procedure dfs (vertex v);
previsit (t>);
for [v, w] E out (v):not visited (w) —+ dfs (H>) rof;
postvisit (v)

end dfs;
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FiG 1.10. Graph search, (a) Graph, (b) Depth-first search. Edges of spanning tree are solid, other
edges dashed. Vertices are numbered in preorder and postorder. If edges [b, e] and [c, d] are deleted,
graph becomes acyclic, and postorder is a reverse topological order, (c) Breadth-first search. Vertex
numbers are levels.

To be correct, dfs requires that all vertices be unvisited init ial ly and that previsit
mark as visited each vertex it visits. The vertices are visited in preorder by previsit
and in postorder by postvisit with respect to the spanning tree defined by the search.
A similar procedure will search undirected graphs.

We can implement breadth-first search by using a queue to store either eligible
unexamined edges or visited vertices. The following program uses the latter
method:

procedure bfs (vertex s);
vertex v\ list queue;
queue = [s];
do queue £ [ ]

v = queue (1); queue = queue [2 . .];
bfvisit (v);
for [v, w] c out (v):not visited (w) and w queue —-

queue := queue & [w]
rof

od
end bfs;

As with dfs, the correctness of bfs requires that all vertices be unvisited ini t ia l ly
and that bfvisit mark vertices visited. A similar procedure will search undirected
graphs.



FOUNDATIONS 19

Both depth-first and breadth-first searches have many applications [51], [52],
[53]; we close this chapter with one application of each. Suppose G is a directed
graph. A topological ordering of G is a total ordering of its vertices such that if
[v, w] is an edge, v is ordered before w. G has a topological ordering if and only if it is
acyclic. Knuth [35] has given an O(m)-time algorithm to find such an ordering that
works by repeatedly deleting a vertex of in-degree zero. An alternative O(m)-time
method is to carry out a depth-first search and order the vertices in decreasing order
as they are postvisited [52]. (If not all vertices are reachable from the original start
vertex we repeatedly search from a new unvisited start vertex until all vertices are
visited.) To prove the correctness of this method it suffices to note that during the
running of the algorithm there is a path of vertices in decreasing postorder from the
start vertex to the current vertex; this path contains all visited vertices greater in
postorder than the current vertex.

We can use breadth-first search to compute distances from the start vertex,
measured by the number of edges on a path. Suppose we define level (s) = 0 and
carry out a breadth-first search starting from s, assigning level (w) = level (v) + 1
when we examine an edge [v, w] such that w is unvisited. Then every edge [v, w] will
satisfy level (w) level (v) + 1, and level (v) for any vertex will be the length of a
shortest path from s to v, if we define the length of a path to be the number of edges
it contains. To prove this it suffices to note that vertices are removed from the queue
in nondecreasing order by level.
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CHAPTER 2

Disjoint Sets

2.1. Disjoint sets and compressed trees. We begin our study of network
algorithms with an algorithm that is easy, indeed almost trivial, to implement, but
whose analysis reveals a remarkable, almost-linear running time. The algorithm
solves the problem of maintaining a collection of disjoint sets under the operation of
union. More precisely, the problem is to carry out three kinds of operations on
disjoint sets: makeset, which creates a new set; find, which locates the set containing
a given element; and link, which combines two sets into one. As a way of identifying
the sets, we shall assume that the algorithm maintains within each set an arbitrary
but unique representative called the canonical element of the set. We formulate the
three set operations as follows:

makeset (x): Create a new set containing the single element x, previously in no
set.

find (x): Return the canonical element of the set containing element x.
link (x, y): Form a new set that is the union of the two sets whose canonical

elements are x and y, destroying the two old sets. Select and return a canonical
element for the new set. This operation assumes that x £ y.

To solve this problem we use a data structure proposed by Galler and Fischer [6].
We represent each set by a rooted tree. The nodes of the tree are the elements of the
set; the canonical element is the root of the tree. Each node x has a pointer p(x) to its
parent in the tree; the root points to itself. To carry out makeset (x) we define p(x)
to be x. To carry out find (x), we follow parent pointers from x to the root of the tree
containing x and return the root. To carry out link (x, y), we define p(x) to be y and
return y as the canonical element of the new set. (See Fig. 2.1.)

This naive algorithm is not very efficient, requiring O(n) time per find in the
worst case, where n is the total number of elements (makeset operations). By adding
two heuristics to the method we can improve its performance greatly. The first,
called path compression, changes the structure of the tree during a find by moving
nodes closer to the root: When carrying out find (x), after locating the root r of the
tree containing jc, we make every node on the path from x to r point directly to r.
(See Fig. 2.2.) Path compression, invented by Mcllroy and Morris [2], increases the
time of a single find by a constant factor but saves enough time in later finds to more
than pay for itself.

The second heuristic, called union by rank, keeps the trees shallow by using a
freedom implicit in the implementation of link. With each node x we store a
nonnegative integer rank (x) that is an upper bound on the height of x. When
carrying out makeset (x), we define rank (x) to be 0. To carry out link (x, y), we
compare rank (x) and rank (y). If rank (x) < rank (y), we make x point to y and
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FlG. 2.1. Representation of sets {a, b, c, d, e,f, g}, {h, i,j, k], |l}. Squares denote nodes. Operation
find (f) returns a, link (a, h) makes a point to h.

return y as the canonical element. If rank (x) > rank (y), we make y point to x and
return x. Finally, if rank (x) = rank (y) we make x point to y, increase rank (y) by
one, and return y. (See Fig. 2.3.) Union by rank, invented by Tarjan [11], is a
variant of the union by size heuristic proposed by Galler and Fischer [6].

The following programs implement the three set operations using these heuris-
tics:

procedure makeset (element x);
p(x) := x; rank (x) ••= 0

end makeset;

element function find (element x);
if x p(x) P(x):= find (p(x)) fi;
return p(x)

end find;

element function link (element x, y);
if rank (x) > rank (y) x y

| rank (x) = rank (y) rank (y) = rank (y) + 1
fi;
p(x ) : = y;
return y

end link;

2.2. An amortized upper bound for path compression. Our goal now is to analyze
the running time of an intermixed sequence of the three set operations. We shall use
m to denote the number of operations and n to denote the number of elements; thus
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FlG. 2.2. Compression of the path [a, b, c,d,e,f]. Triangles denote subtrees.

FIG. 2.3. Linking by rank, (a) Roots of unequal rank. Smaller ranked root points to larger, (b) Roots
of equal rank. Root of new tree increases by one in rank.

the number of makeset operations is n, the number of links is at most n — 1, and
m n. The analysis is difficult because the path compressions change the structure
of the trees in a complicated way. Fischer [4] derived an upper bound of
O(m log log n). Hopcroft and Ullman [7] improved the bound to O(m lg*n) where
lg*n is the iterated logarithm, defined by for and
Ig* n = min Tarjan [8] obtained the actual worst-case bound,
0(/wa(m.n), where a(m, n) is a functional inverse of Ackerman's function [1], For
i,j 1 we define Ackerman's function A(i,j) by
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We define the inverse function a(m, n) for by

The most important property of A(i,j) is its explosive growth. In the usual
definition, A(\,j) = j + I and the explosion does not occur quite so soon. However,
this change only adds a constant to the inverse function a, which grows very slowly.
With our definition, A(3, 1) - 16; thus a(m, n) 3 for n < 216 = 65,536.
A(4, 1) = A(2, 16), which is very large. Thus for all practical purposes a(m, n) is a
constant not larger than four. For fixed n, a(m, n) decreases as m/n increases. In
particular, let a(i, n) = Then implies
a(m, n) i. For instance, [m/n] 1 + Ig Ig n implies a(m, n) 1, and
[m/n] lg*Ai implies a(m, n) 2.

We shall derive an upper bound of O(ma(m, n)) on the running time of the
disjoint set union algorithm by using Tarjan's multiple partition method [8], [11].
We begin by noting some simple but crucial properties of ranks.

LEMMA 2.1 . Ifx is any node, rank (x) rank (p(x)), with the inequality strict if
p(x) x. The value of rank (x) is initially zero and increases as time passes until
p(x) is assigned a value other than x; subsequently rank (x) does not change. The
value of rank (p(x)) is a nondecreasing function of time.

Proof. Immediate by induction on time using the implementations of makeset,
find and link.

LEMMA 2.2. The number of nodes in a tree with root x is at least 2rank(x).
Proof. By induction on the number of links. The lemma is true before the first

link. Consider an operation link (x, y) before which the lemma holds and let rank
denote the rank function just before the link. If rank (x) < rank (y), the tree
formed by the link has root y, with unchanged rank, and contains more nodes than
the old tree with root y; thus the lemma holds after the link. The case
rank (x) < rank (y) is symmetric. Finally, if rank (x) = rank (y), the tree formed
by the link contains at least 2rank (x) + 2rank (y) = 2rank (y}+ ' nodes. Since the rank of its
root, y, is now rank (y) + 1 , the lemma holds after the link. D

LEMMA 2.3. For any integer k 0, the number of nodes of rank k is at most n/2k.
In particular, every node has rank at most Ig n.

Proof. Fix k. When a node x is assigned a rank of k, label by x all the nodes
contained in the tree with root x. By Lemma 2.2 at least 2* nodes are so labeled. By
Lemma 2. 1 if the root of the tree containing x changes, the rank of the new root is at
least k + 1 . Thus no node can be labeled twice. Since there are n nodes there are at
most n labels, at least 2* for each node of rank k, which means that at most n/2k

nodes are ever assigned rank k by the algorithm. D
A single makeset or link operation takes 0(1) time. A single find takes O(log «)

time, since by Lemma 2. 1 the node ranks strictly increase along the find path and by
Lemma 2.2 no node has rank exceeding Ig «. Thus we obtain an O(m log n) bound
on the time required for a sequence of m set operations. The 0(log n) bound on find
is valid whether or not we use path compression; it depends only on union by rank.

We can obtain a much better overall bound on the algorithm with path
compression by amortizing, that is, by averaging over time. To make the analysis as
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concrete as possible we introduce the concept of credits and debits. One credit will
pay for a constant amount of computing. To perform a set operation we are given a
certain number of credits to spend. If we complete the operation before running out
of credits we can save the unused credits for future operations. If we run out of
credits before completing an operation we can borrow credits by creating credit-
debit pairs and spending the created credits; the corresponding debits remain in
existence to account for our borrowing. If desired we can use surplus credits to pay
off existing debits one for one. With this accounting scheme the total time for a
sequence of set operations is proportional to the total number of credits allocated for
the operations plus the number of debits remaining when all the operations are
complete.

In using this scheme to analyze the set union algorithm we shall not keep track of
surplus credits. Thus we never pay off debits; instead we store them in the
compressed trees. It is important to remember that the credits and debits are only an
analytical tool; the actual implementations of the set operations need not and should
not refer to them.

In order to carry out the analysis we need a few more concepts. We define a
partitioning function B(i,j) using Ackerman's function A(i,j) as follows:

For each level i [0 .. a(m, n) + 1], we use B(i,j) to define a partition of the
into blocks given byintegers

(See Fig. 2.4.) Every level-zero block is a singleton (block (0,j) = {j}). As the
level increases, the partition becomes coarser and coarser, until at level a(m, n) + 1
there is only one block (block (a(m, n) + 1, 0) = [0 . . Ig n] since
B(a(m, n ) + 1 , 1 ) = A(a(m, n), Lm/n ) > Ig n by the definition of a). As a mea-
sure of the coarsening we define by to be the number of level-(/ - 1) blocks whose
intersection with block (i,j) is nonempty.

FIG. 2.4. Multiple partition for analysis of set union algorithm. Level zero is omitted and a
logarithmic scale is used. Shaded area is block (2, 2) = [24. . 216 - 1 ].
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As an aid in the credit accounting we define the level of a node x to be the
minimum level i such that rank (x) and rank (p(x)) are in a common block of the
level i partition. As long as x = p(x), level (x) = 0. When p(x) is assigned a value
other than x, level (x) becomes positive, since then rank (x) < rank (p(x)). Subse-
quently rank (x) remains fixed but rank (p(x)) increases; as it does, level (x)
increases, up to a maximum of a(w, n) + 1.

To pay for the set operations we allocate one credit to each makeset, one credit to
each link, and a(m, n) + 2 credits to each find. The credit allocated to a makeset or
link completely pays for the corresponding operation. To analyze the find opera-
tions, let us consider a find that starts at a node x0 and follows the path
xo, x1 P(x O ) , • • • , x 1 = P(x1-1) where p(xt) = x/. To pay for the find we need one
credit per node on the find path. For each value of / in the interval
[0 .. a(m, n) + 1 ], we assign one of the credits allocated to the find to the last node
of level i on the path. At every node on the path not receiving a credit, we create a
credit-debit pair. We can now pay for the find, leaving a debit on every node that is
not last in its level on the path.

The total number of credits allocated to find operations is m(a(m, n) + 2). It
remains for us to count the debits remaining after every find is carried out. A node
receives no debit until its level is at least one and thus its rank is fixed. Consider a
typical node x and a level / s 1. We shall bound the number of debits assigned to x
while level (x) = /. Consider a find path x0, jc,, • • • , x, that causes x = xk to
receive a debit while on level /. Then rank (x) and rank (p(x)) = rank (xk+]) are in
different level-(/ - 1) blocks just before the find, and since x is not the last node of
level / on the path, rank (xk+1) and rank (xt) are also in different level-(i - 1)
blocks just before the find. After the find, p(x) = xt; thus compressing the find path
causes rank (p(x)) to move from one level-(i - 1) block, say block (i - 1,j), to
another, say block (i — 1,j"), where j" > j'. This means that x can receive at most
by — 1 debits while on level /, where y is the index such that rank (x) e block (i,j):
When the level of x first becomes /, rank (x) and rank (p(x)) are in different
level-(/ - 1) blocks. Each debit subsequently placed on x causes rank (p(x)) to
move to a new level-(i — 1) block. After this happens btj - 1 times, rank (x) and
rank (p(x)) are in different level-/ blocks.

Consider the situation after all the set operations have been performed. Let ntj be
the number of nodes with rank in block (/,./)• The argument above implies that the
total number of debits in existence is at most

We have the following estimates on ntj and 60:
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since and for implies

for

since

since

Substituting these estimates into the sum, we obtain the following upper bound on
the number of debits:

Thus we have:
THEOREM 2.1. The set union algorithm with path compression and union by rank

runs in O(ma(m, n)) time.

2.3. Remarks. Path compression has the practical and esthetic disadvantage
that it requires two passes over the find path, one to find the tree root and another to
perform the compression. One may ask whether there is any efficient one-pass
variant of compression. Tarjan and van Leeuwen [11] have studied a number of
one-pass variants, some of which run in O(ma(m,«)) time when combined with
union by rank. The most intriguing, seemingly practical one is path halving: when
traversing a find path, make every other node on the path point to its grandparent.
(See Fig. 2.5.)

The following program implements path halving:

element function find (element *);
dop(p(x)) p(x) — x = p(x) = p(p(x)) od;
return p(x)

end find;

Another important question is whether the bound in Theorem 1 is tight; that is,
are there sequences of set operations that actually take l(m«(m,«)) time? The
answer is yes, as proved by Tarjan [8J. Indeed, the !2(wa(/w, n))-time lower bound
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FIG. 2.5. Halving a path.

extends to a very general class of pointer manipulation methods for maintaining
disjoint sets [3], [9]. However, this result does not rule out the possibility of a
linear-time algorithm that uses the extra power of random access. For the restricted
case of set union in which the pattern of link operations is known ahead of time,
Gabow and Tarjan [5] have recently discovered a linear-time algorithm that
combines path compression on large sets with table look-up on small sets. One can
use this algorithm in many, but not all, of the common situations requiring disjoint
set union. (In particular, we shall use disjoint set union in Chapter 6 in a setting
where Gabow and Tarjan's algorithm does not apply.)

Path compression applies to many problems other than set union. The most
general result is by Tarjan [10], who has defined a generic problem requiring the
maintenance of a function defined on paths in trees that can be solved in
O(ma(m, «)) time using this technique.
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CHAPTER 3

Heaps

3.1. Heaps and heap-ordered trees. Our use of trees as data structures in
Chapter 2 was especially simple, since we needed only parent pointers to represent
the trees, and the position of items within each tree was completely unspecified,
depending only on the sequence of set operations. However, in many uses of trees,
the items in the tree nodes have associated real-valued keys, and the position of
items within the tree depends on key order. In this and the next chapter we shall
study the two major examples of this phenomenon.

A heap is an abstract data structure consisting of a collection of items, each with
an associated real-valued key. Two operations are possible on a heap:

insert (/, h): Insert item i into heap h, not previously containing i.
deletemin (h): Delete and return an item of minimum key from heap /z; if h is

empty return null.

The following operation creates a new heap:

makeheap ($): Construct and return a new heap whose items are the elements in
set s.

In addition to these three heap operations, we sometimes allow several others:

findmin (h): Return but do not delete an item of minimum key from heap h; if h is
empty return null.

delete (/', h): Delete item / from heap h.
meld (h\, h2)'. Return the heap formed by combining disjoint heaps h\ and A2.

This operation destroys A, and hz.

Williams [10], the originator of the term "heap," meant by it the specific
concrete data structure that we call a d-heap in §2. Knuth [8] used the term
"priority queue" to denote a heap. Aho, Hopcroft and Ullman [1] used "priority
queue" for an unmeldable heap and "mergeable heap" for a meldable heap.

To implement a heap we can use a heap-ordered tree. (See Fig. 3.1.) Each tree
node contains one item, with the items arranged in heap order: if x and p(x) are a
node and its parent, respectively, then the key of the item in p(x) is no greater than
the key of the item in x. Thus the root of the tree contains an item of minimum key,
and we can carry out findmin in 0(1) time by accessing the root. The time bounds of
the other operations depend on the tree structure.

We shall study two heap implementations that use this idea. The d-heaps
described in §3.2 are appropriate when only one or a few unmeldable heaps are
needed. The leftist heaps of §3.3 are appropriate when several meldable heaps are
needed.

33
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FIG. 3.1. A heap-ordered tree. Numbers in nodes are keys. (To simplify this and subsequent figures,
we treat the keys as if they themselves are the items.)

3.2. d-heaps. Suppose the tree representing a heap is exogenous; that is, the
heap items and the tree nodes are distinct. This allows us to restore heap order after
an update by moving the items among the nodes. In particular, we can insert a new
item i as follows. To make room for i, we add a new vacant node x to the tree; the
parent of x can be arbitrary, but x must have no children. Storing / in x will violate
heap order if the parent p(x) of x contains an item whose key exceeds that of /, but
we can remedy this by carrying out a sift-up: While p(x) is defined and contains an
item whose key exceeds key(i), we store in x the item previously in p(x), replace the

FIG. 3.2. Insertion of key 6 using sift-up, (a) Creation of a new leaf. Since 6 < 99, 99 moves into the
new node, (b) Since 6 < 11, 11 moves into the vacant node, (c) Since 6 < 7, 7 moves into the vacant
node, (d) Since 6 S 2, 6 moves into the vacant node and the sift-up stops.
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vacant node x by p(x), and repeat. When the sifting stops, we store / in x. (See Fig.
3.2.)

Deletion is a little more complicated than insertion. To delete an item /, we begin
by finding a node y with no children. We remove the item, say y, from y and delete y
from the tree. If i = j we are done. Otherwise we remove i from the node, say x,
containing it, and attempt to replace it by j. If key (j) key (/), we reinsert j by
carrying out a sift-up starting from x. If key (j) > key (/'), we reinsert y by carrying
out a sift-down starting from x: While key (y) exceeds the key of some child of x, we
choose a child c of x containing an item of minimum key, store in x the item in c,
replace x by c, and repeat. (See Fig. 3.3.) When the sifting stops, we storey in x.

When deleting an item, the easiest way to obtain a node y with no children is to
choose the most-recently added node not yet deleted. If we always use this rule, the
tree nodes behave like a stack (last-in, first-out) with respect to addition and
deletion.

The running times of the heap operations depend upon the structure of the tree,
which we must still define. The time for a sift-up is proportional to the depth of the
node at which the sift-up starts. The time for a sift-down is proportional to the total
number of children of the nodes made vacant during the sift-down. A type of tree
that has small depth, few children of nodes on a path and a uniform structure is the

FlG. 3.3. Deletion of key 6 using sift-down. The last-created node contains key 99. (a) Destruction of
the last leaf. Key 99 must be reinserted, (b) The smallest key among the children of the vacant node is 7.
Since 99 > 7,7 moves into the vacant node, (c) The smallest key among the children of the vacant node
is \\. Since 99 > \ 1, 11 moves into the vacant node, (d) Since the vacant node has no children, 99 moves
in and the sift-down stops.
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FIG. 3.4. A 3-heap with nodes numbered in breadth-first order. Next node to be added is 10, a child
o/3.

complete d-ary tree: each node has at most d children and nodes are added in
breadth-first order. Thus we define a d-heap to be a complete d-ary tree containing
one item per node arranged in heap order. (See Fig. 3.4.)

The d-heap operations have running times of 0(1) for fmdmin, 0(log/z) for insert,
and O(d \ogdn) for delete and deletemin, where n is the number of items in the heap,
since a complete d-ary tree has depth \ogdn + 0(1). The parameter d allows us to
choose the data structure to fit the relative frequencies of the operations; as the
proportion of deletions decreases, we can increase d, saving time on insertions. We
shall use this capability in Chapter 7 to speed up a shortest-path algorithm.

The structure of a d-heap is so regular that we need no explicit pointers to
represent it. If we number the nodes of a complete d-ary tree from one to n in
breadth-first order and identify nodes by number, then the parent of node x is
[(x - l)/d] and the children of node x are the integers in the interval
[d(x - 1) + 2 .. min \dx + !,n}]. (See Fig. 3.4.) Thus we can represent each node
by an integer and the entire heap by a map h from {l . . n} onto the items. The
following programs implement all the d-heap operations except makeheap, which
we shall consider later.

item function findmin (heap h)
return if h = ( }-» null | h { } A ( l ) f i

end findmin;

procedure insert (item i, modifies heap h);
1. s if tup(i , |h] |+ l , h )
end insert;

procedure delete (item i', modifies heap h);
item 7;

j--=h(\h\)\
2. h(\h|) := null;

if/ ./and key (j) key (i) siftup (j, h-1 (i), h)
| i j and key (j) > key (/') siftdown (7, h - ] ( i ) , h)

fi
end delete;
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item function deletemin (modifies heap A);
if h = f } return null

itemi;
i:-A(0;
delete (h(1),h);
return i

fi
end deletemin;

procedure siftup (item i, integer x, modifies heap h);
integer p;
p:-[x-1)/d]
dop 0 and key (h(p)) > key (i)

h ( x ) , x , p : = h ( p ) , p ( p - 1)/d] o d ;
3. h(x) = i
end siftup;

procedure siftdown (item i, integer x, modifies heap h);
integer c;
c = minchild (x, h);
do c 0 and key (h(c)) < key (/')

h(x), x, c := h(c), c, minchild (c, h) od;
A(x) = - i

end siftdown;

integer function minchild (integer x, heap h);
return if d.(x - 1) + 2 > | h \ 0

4.[d.(x-1) + 2 .(jt - 1) + 2 [h] m i n { d . ( x - 1)+ 2. min{d. x + \,\h\\\\ by key°h
fi

end minchild;

Notes. See §1.3 for a discussion of our notation for maps. The complicated
expression in line 4 selects from among the set of integers from d(x - 1) + 2 to
min {dx + l , | /r |}, i.e. the children of x, an integer c such that key (h(c)) is
minimum, i.e. a node containing an item of minimum key. D

The best way to implement the map representing a d-heap is as an array of
positions from one to the maximum possible heap size. We must also store an integer
giving the size of the heap and, if arbitrary deletion is necessary, every item / must
have a heap index giving its position h~\i) in the heap. If arbitrary deletion is
unnecessary we need not store heap indices, provided we customize deletemin to call
siftdown directly. (A call to delete from deletemin will never result in a sift-up.)

We have written siftup and siftdown so that they can be used as heap operations
to restore heap order after changing the key of an item. If the key of item / in heap h
decreases, the call siftup (/, h-1'(/), h) will restore heap order; if the key increases,
siftdown (/, h - 1 ' ( / ) , /») will restore heap order. We shall use this capability in
Chapter 7.
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The last heap operation we must implement is makeheap. We can initialize a
d-heap by performing n insertions, but then the time bound is O(n logdn). A better
method is to build a complete d-ary tree of the items in arbitrary order and then
execute siftdown (h(x), x, h) for x = «, n - 1, • • • , 1, where h is the map defining
the item positions. The running time of this method is bounded by a constant times
the sum

since there are at most n/d' nodes of height i in a complete d-ary tree of n nodes.
The following program implements makeheap:

heap function makeheap (set 5);
map/z;
A: - { };
forie i s h(\h\+ 1) = i rof;
for x = | ,s |, | s | - 1 .. 1 siftdown (h(x), x, h) rof;
return h

end makeheap;

We close this section with some history and a remark. Williams, building on the
earlier TREESORT algorithm of Floyd, invented 2-heaps and discovered how to
store them as arrays [6], [10]. Johnson [7] suggested the generalization to d > 2. An
analysis of the constant factor involved in the timing of the heap operations suggests
that the choice d = 3 or 4 dominates the choice d = 2 in all circumstances, although
this requires experimental confirmation.

3.3. Leftist heaps. The d-heaps of §3.2 are not easy to meld. In this section we
shall study leftist heaps, which provide an alternative to </-heaps when melding is
necessary. Knuth [8] coined the term "leftist" for his version of a data structure
invented by Crane [5].

If x is a node in a full binary tree, we define the rank of x to be the minimum
length of a path from x to an external node. That is, rank (x) = 0 if x is an external
node, rank (x) = 1 + min {rank (left ( x ) ) , rank (right (x))} if Jt is an internal node.
A full binary tree is leftist if rank (left (x)) rank (right (x)) for every internal

FIG. 3.5. A leftist heap. External nodes are omitted. Numbers near nodes are ranks.
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FIG. 3.6. Merging two leftist heaps. Merged path is marked by heavy lines. To maintain the leftist
property, children of 5 are swapped.

node x. In a leftist tree the right path is a shortest path from the root to an external
node. It is easy to prove by induction that this path has length at most Ig n.

A leftist heap is a leftist tree containing one item per internal node, with items
arranged in heap order. (See Fig. 3.5.) We shall treat leftist heaps as being
endogenous; that is, the items themselves are the tree nodes. Since the external
nodes contain no information, we shall assume that every external node is null. To
save tests in our programs we assume that rank (null) is initialized to zero. To store
a leftist heap, we need two pointers and one integer for each internal node, giving its
left and right children and its rank. To identify the heap, we use a pointer to its root.

The fundamental operation on leftist heaps is melding. To meld two heaps, we
merge their right paths, arranging nodes in nondecreasing order by key. Then we
recompute the ranks of the nodes on the merged path and make the tree leftist by
swapping left and right children as necessary. (See Fig. 3.6.) The entire meld takes
0(log n) time, where n is the number of nodes in the two heaps.

To insert an item into a leftist heap, we make the item into a one-node heap and
meld it with the existing heap. To delete a minimum item, we remove the root and
meld its left and right subtrees. Both these operations take O(\og n) time. The
following programs implement findmin, meld, insert, and deletemin on leftist
heaps:

item function findmin (heap h);
return h

end findmin;

heap function meld (heap h\, h2);
return if h1 = null h2 \ h2 = null h1

| h1 null and h2 null mesh (h1,, h2) fi
end meld;
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heap function mesh (heap h\,h2)\
if key ( h } ) > key (h2) h1 h2 fi;
right (h1,)= if right (h1) = null h2

[right (h1) null mesh (right (h1), h2) fi;
if rank (left (h1)) < rank (right (h1,)) — left (h1,) right (h1,) fi;
rank (A,) = rflwfc (rigAf (A,)) + 1;
return /j,

end mesh;

Note. The meld program is merely a driver to deal efficiently with the special case
of a null input; the mesh program performs the actual melding.

procedure insert (item /, modifies heap h);
left (i), right (/'), rank (i) =- null, null; 1;
h := meld (/, h)

end insert;

item function deletemin (modifies heap h);
item /';
/ = h ;
h =- meld (left (h), right (h));
return /;

end deletemin;

Before studying heap initialization and arbitrary deletion, let us consider two
other useful heap operations:

listmin (x, h): Return a list containing all items in heap h with key not exceeding
real number x.

heapify (q): Return a heap formed by melding all the heaps on the list q. This
operation assumes that the heaps on q are disjoint and destroys both q and the
heaps on it.

The heap order of leftist heaps allows us to carry out listmin in time proportional
to the number of elements listed: we perform a preorder traversal starting from the
root of the heap, listing every encountered item with key not exceeding x and
immediately retreating from each item with key exceeding x. The same method
works on d -heaps but takes O(dk) rather than O(k) time, where k is the size of the
output list. The following program implements listmin on leftist heaps:

list function listmin (real x, heap h);
return if h = null or key (h) > x [ ]

| h null and key (h) x — [h] & listmin (left (h))
& listmin (right (h))

fi
end listmin;

To carry out heapify, we treat the input list as a queue. We repeat the following
step until only one heap remains, which we return: Remove the first two heaps from
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the queue, meld them, and add the new heap to the end of the queue. The following
program implements this method:

heap function heapify (list q);
do[q] 2 q.= q[3 ..] & meld (q(1), q(2))od;
return if q = [ ] —> null|<? / [ ] -» ?(1) fi

end heapify;

In order to analyze the running time of heapify, let us consider one pass through
the queue. Let k be the number of heaps on the queue and n the total number of
items they contain. After f k/2~\ melds, every heap has been melded with another,
leaving at most L fc/2J heaps. The total time for these melds is

where nt is the number of items in the ith heap remaining after the pass. We have
and These constraints imply that the time for one pass

through the queue is O(k max {l, log (n/k)\. The time for the entire heapify is

where k is the number of original heaps and n is the total number of items they
contain.

We can make a leftist heap of n items in O(n log n) time by repeated insertion,
but heapify gives a better method: We make each item into a one-item heap and
apply heapify to a list of these heaps. In this case k = n and the running time is O(n).
The following program implements makeheap using this method:

heap function makeheap (set s);
list q;

q;= [ ];
for i left (/), right (/), rank (/'), q null, null, 1, q & [i] rof;
return heapify (q)

end makeheap;

The last heap operation is delete. It is possible to delete an arbitrary item from a
leftist heap in 0(log n) time if we add parent pointers to the tree representation. A
better method for our purposes is to use lazy deletion, as proposed by Cheriton and
Tarjan [4]: To delete an item, we merely mark it deleted; we carry out the actual
deletion during a subsequent findmin or deletemin. To carry out findmin, we
perform a preorder traversal of the tree, making a list of each nondeleted node all of
whose proper ancestors are marked deleted; then we heapify the subtrees whose
roots are on the list and return the root of the single tree resulting. Implementation
of deletemin is similar. With this method we can also if we wish perform lazy
melding: To meld two heaps we create a dummy node whose children are the roots
of the two heaps to be melded. During findmin and deletemin we treat dummy nodes
as if they were marked deleted. The following programs implement lazy melding
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and findmin using this method. (We leave as an exercise implementing delete and
deletemin and modifying insert and makeheap to mark newly inserted items
nondeleted.) The program lazymeld marks dummy nodes by giving them a key of
minus infinity.

heap function lazymeld (heap h1,h2
)\

if h1, = null return h2 \ h2 = null return h1

| h] null and h2 null
item i;
i = create item;
if rank (h1) < rank (h2) h1 h2 fi;
left (i), right (i), key (i), rank (/') = h1,h

 2, — rank(h2) + 1;
return i

fi
end lazymeld;

item function findmin (modifies heap h);
h := heapify (purge (h));
return h

end findmin;

list function purge (heap h);
return if h = null [ ]

| h null and key (h) > - and not deleted (h) [h]
| h null and (key (h) = or deleted (h))

purge (/eft (h)) & purge (right (h))
fi

end purge;

Note. The purge program makes a list of all nondummy, nondeleted nodes in h all
of whose proper ancestors are dummy or deleted. The heapify program must use the
original version of meld rather than lazymeld.

With lazy melding and lazy deletion, the time for a meld or deletion is 0(1); the
time for a findmin is O(k max {l, log (n/(k + 1))}), where k is the number of
dummy and deleted items discarded from the heap. Lazy deletion is especially
useful when there is a way to mark deleted items implicitly. We shall see an example
of this in Chapter 6.

3.4. Remarks. There are several other heap operations that can be added to our
repertoire with little loss in efficiency. One such operation is addtokeys (x, h), which
adds real number x to the key of every item in heap h. To implement this operation
we change our heap representation so that, instead of storing a key with each item,
we store a key difference:
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With this representation we can evaluate the key of an item x by summing key
differences along the path from x to the tree root. The operation addtokeys (x, h)
takes O( I) time: we add x to the key difference of the tree root. The asymptotic
running times of the other heap operations are unaffected by this change in the data
structure. We shall see another use of storing differences in the next chapter.
Cheriton and Tarjan [4] first proposed using key differences in heaps, borrowing the
idea from an algorithm of Aho, Hopcroft and Ullman [2] for computing depths in
trees.

Although leftist trees give a simple and efficient way to represent meldable heaps,
almost any class of balanced trees will do almost as well; all we need is a definition of
balance that allows rapid melding of two balanced trees containing items arranged
in heap order. Empirical and theoretical evidence gathered by Brown [3] suggests
that the class of "binomial trees" [9] gives the fastest implementation of meldable
heaps when constant factors are taken into account. However, on binomial heaps the
heap operations are harder to describe and implement than on leftist heaps.
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CHAPTER 4

Search Trees

4.1. Sorted sets and binary search trees. Heap order is not the only way to
arrange items in a tree. Symmetric order, which we shall study in this chapter, is
perhaps even more useful. We consider the problem of maintaining one or more sets
of items under the following operations, where each item has a distinct key chosen
from a totally ordered universe:

access (k, s): Return the item in set s with key k:; if no item in s has key k, return
null.

insert (i, s): Insert item i into set s, not previously containing i.
delete (i, 5): Delete item i from set s.

We can regard each set as totally ordered by key; thus we shall call this problem
the sorted set problem. The following operation creates a new sorted set.

makesortedset: Return a new, empty sorted set.

We shall also need two more drastic update operations on sorted sets:

join (s1, i, s2): Return the sorted set formed by combining disjoint sets s1,, {i}, and
s2. This operation destroys s1, and s2 and assumes that every item in s1 has key
less than key (i) and every item in s2 has key greater than key (i).

split (i, s): Split sorted set 5, containing item i, into three sets: s1,, containing all
items with key less than key (i); {i}; and s2, containing all items with key
greater than key (i). Return the pair [s1,, s2]. This operation destroys s.

We shall assume that every item is in at most one sorted set. This means that the
parameter s in delete and split is redundant, and when convenient or necessary we
shall omit it.

We can represent a sorted set by a full binary tree containing one item per
internal node, with items arranged in symmetric order: if node x contains an item
with key k, then every item in the left subtree of x has key less than /:, and every
item in the right subtree of x has key greater than k. (See Fig. 4.1.) We call this data
structure a binary search tree.

We shall regard binary search trees as endogenous (the items themselves are the
tree nodes) and every external node as null. With each node x we store three
pointers: left (x), right (x), and p(x), to the left child, right child, and parent of x,
respectively. (We can omit parent pointers at some loss in convenience, as we shall
discuss later.) We identify a binary search tree by a pointer to its root; a null pointer
denotes an empty tree.

To access the item with key k in a binary search tree, we carry out a search by
beginning at the root x and repeating the following step until key (x) = k or

45
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FIG. 4.1. Insertion and deletion in a binary search tree. External nodes are omitted.(&) Insertion of
item with key 80. (b) Deletion of item with key 30. It is replaced by its predecessor, with key 20, which is
in turn replaced by its left child, with key \ 5.

x = null: If key (x) > k, replace x by left (x); otherwise (key (x) < k) replace x by
right ( x ) . When the search stops, we return x. To insert an item i', we perform a
similar search, using k = key (i) and maintaining a "trailing pointer" to the parent
of the current node x. The search will stop at a (null) external node, which we replace
byi. (See Fig. 4.1.)

In search trees, as in heaps, deletion is more complicated than insertion. To delete
an item i', we test whether i has a null child. If not, we swap i with its symmetric-
order predecessor y, found by following right pointers from left (i) until reaching a
node with a null right child. Although i may now be out of order, it has at least one
null child. To delete i we replace it by its non-null child, if any, or by null. (See Fig.
4.1.)

A join of two search trees is easy: We perform join (s1,, i, s2) by making the roots
of the trees representing S1, and s2 the left and right children ofi, respectively; then
we return i. Splitting a search tree requires a sequence of joins. (See Fig. 4.2.) To
split a search tree at a node i, we traverse the path from i to the root of the tree,
deleting all edges on the path and incident to it. This breaks the original tree into a
collection of subtrees, each of which is either a node on the path or has a root that is
a child of a node on the path. We join the subtrees containing items smaller than i to
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FIG. 4.2. Splitting a binary search tree, (a) Original tree. Triangles denote subtrees. (b) Result of
splitting at node i.

form a left tree and the subtrees containing items larger than / to form a right tree.
A more precise description of the process is as follows.

To carry out split (i, 5), we initialize the current node x, the previous node y, the
left tree s1 and the right tree s2, to be the parent ofi, /' itself, the left subtree of i and
the right subtree of i, respectively. Then we repeat the following step until x is null:
If y is the left child of x, simultaneously replace x, y and s2 by p(x), x and the join of
s2, x and the right subtree of x; otherwise (y is the right child of x) simultaneously
replace x,y and s1 by p(x), x and the join of the left subtree of x, x and s1.

With a representation of sorted sets by binary search trees, accessing an item i
takes time proportional to the depth of i in its search tree. Inserting an item /' takes
time proportional to the depth of i after the insertion. Deleting an item i takes time
proportional to the depth of /' if i has a null child or to the depth of its predecessor if
not. A join takes O(1) time. Splitting at an item /' takes time proportional to the
depth of i. A binary search tree of n items can have depth n — 1 (if it consists of a
path of n internal nodes); thus all the operations except join have a worst-case
running time of O(n). In §4.2 and 4.3 we shall discuss two ways of controlling the
tree structure to reduce this bound.



48 CHAPTER 4

FIG. 4.3. Representation of parents and children in a binary tree using two pointers per node. Empty
fields contain null pointers.

The only operations in which we have used parent pointers are deletion and
splitting. If we have access to the root of the tree in which such an operation is to
take place, we can perform the operation in a top-down fashion without using parent
pointers, saving space amounting to one pointer per node in our data structure. A
way to save the same amount of space without sacrificing parent pointers is to use
the tree representation shown in Fig. 4.3, in which each node points to its left child,
or to its right child if the left child is null, and a left child points to its right sibling, or
to its parent if it has no right sibling. Accessing the parent of a node or either of its
children requires following at most two pointers; thus this representation trades time
for space.

4.2. Balanced binary trees. The standard way to make search tree operations
efficient in the worst case is to impose a balance condition that forces the depth of an
n-node tree to be O(log n). This requires rebalancing the tree after (or during) each
update operation. Kinds of balanced search trees for which this is possible include
height-balanced binary trees [1], [6], [10], weight-balanced binary trees [12],
B-trees and their variants [4], [8], [9], [11] (which are not binary but have variable
node degree) and many others. In this section we shall study one kind of balanced
search tree that stands out as possessing most of the desirable features of all the
others. We call these trees balanced binary trees.

A balanced binary tree is a full binary tree each of whose nodes x has an integer
rank, denoted by rank (x), such that the ranks have the following properties (see
Fig. 4.4):

(i) If x is any node with a parent, rank (x) rank ( p ( x ) ) ) rank (x) + 1.

FIG. 4.4. A balanced binary tree. Numbers next to nodes are ranks.
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(ii) If x is any node with a grandparent, rank (x) < rank (p2(x)).
(iii) If x is an external node, rank (x) = 0 and rank (p(x)) = 1 if x has a

parent.
Bayer [3] invented balanced binary trees, calling them "symmetric binary

B-Mrees." Guibas and Sedgewick [7] studied the properties of these and related
kinds of trees, collectively calling them "red-black trees." Olivie [13], [14]
rediscovered balanced binary trees using a completely different definition; he called
them "half-balanced trees."

Let us call a node x black if rank (p(x)) = rank (x) + 1 or p(x) is undefined
and red if rank (p(x)) = rank (x). By (i), every node is either red or black. By (ii),
every red node has a black parent. By (iii), every external node is black, and all
paths from a given node to an external node contain the same number of black
nodes. We can use these properties of red and black nodes as an alternative
definition of balanced binary trees. To represent a balanced binary tree, we store
with each internal node a bit that indicates its color.

If in a balanced binary tree we condense every red node into its parent, we obtain
a 2,4 tree: every internal node has two, three, or four children and all external nodes
have the same depth. Conversely, we can convert any 2,4 tree into a balanced binary
tree by binarizing every node. (See Fig. 4.5.) This correspondence is not one-to-one,
since there are two representations of a 3-node, but it does give a third way to define
balanced binary trees. A fourth way is Olivie's definition: a binary tree is balanced if
and only if it is half-balanced: for every node x, the length of the longest path from x
to an external node is at most twice the length of the shortest path from x to an
external node [13].

FIG. 4.5. Correspondence between 2,4 and balanced binary trees. Letters next to nodes denote height
in 2, 4 tree, rank in balanced binary tree. Triangles denote subtrees with roots of height or rank r — 1.
(a) 2-node. (b) 3-node. There are two binary forms, (c) 4-node.
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LEMMA 4.1. A node of rank k has height at most 2k and has at least 2k+1 -1
descendants. Thus a balanced binary tree with n internal nodes has depth at most
2 L l g ( « + 1 ) J .

Proof. The first part of the lemma, which implies the second part, is immediate by
induction on k.

Lemma 4.1 implies that the access time in a balanced binary search tree is
O (log n). We can also rebalance such a tree after an insertion or deletion in
O (log n) time. The atomic operations necessary for rebalancing after an insertion
are promotion, which increases the rank of a node by one (called "color flip" by
Guibas and Sedgewick), single rotation and double rotation (which consists of two
single rotations). Each such operation takes 0(1) time.

Figure 4.6 illustrates these operations. When a single or double rotation is
performed, we refer to the root of the affected subtree as the node at which the
rotation takes place. Single and double rotations preserve symmetric order, which is
what makes them so useful for rebalancing.

The effect of an insertion is to replace a node of rank zero (a null external node)
by a node of rank one (the inserted node). This may violate property (ii) by creating
a red node x with a red parent. To rebalance the tree, we test whether the (black)
grandparent p 2 ( x ) of x has two red children. If so, we promote p2(x), replace x by
p2(x), and test for a new violation of (ii). If not (p2(x) has a black child), we
perform a single or double rotation as appropriate, which completes the rebalancing.
(See Fig. 4.7.) With this method, rebalancing after an insertion requires a sequence
of promotions followed by at most two single rotations, for a total of O(log n) time.

To rebalance after a deletion, we use demotion, which decreases the rank of a
node by one, in place of promotion. (See Fig. 4.6.) The effect of a deletion is to

FIG. 4.6. Atomic operations for insertion and deletion, (a) Promotion/demotion. Circle denotes a
node of rank indicated, (b) Single rotation. Triangles denote subtrees, (c) Double rotation. There is a
symmetric variant.
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FIG. 4.7. Insertion steps. Each case has a symmetric variant (not shown). Circles denote nodes of
indicated ranks. Triangles denote subtrees with black roots. The current node x is the parent of the root
of subtree B. (a) Promotion, (b) Single rotation, (c) Double rotation.

replace a node in the tree by another node x of one lower rank. The rank of A: may be
two less than the rank of its parent, which violates property (i). To rebalance the
tree, we apply the appropriate case below (see Fig. 4.8).

Case 1. The siblingy of x is black.
Subcase la. Both children of y are black. Demotep(x), replace x by p(x), and

test for a new violation of (i).
Subcase Ib. The child of y farthest from x is red. Perform a single rotation at

p ( x ) and stop.
Subcase 1c. The child of y nearest x is red and its sibling is black. Perform a

double rotation atp(x) and stop.
Case 2. The sibling y ofx is red. Both children of y are black by (i). Perform a

single rotation at p ( x ) and proceed as in Case 1. (After the rotation the new
sibling of x is black.) When applying Case 1 in this situation, Subcase la
cannot cause a new violation of (i); thus all subcases are terminal.

With this method, rebalancing after a deletion requires a sequence of demotions
followed by at most three single rotations, for a total of 0(log n) time. It is also
possible to rebalance in a top-down fashion during an insertion or deletion; this takes
O(log n) rather than 0(1) rotations but still takes O(log n) time [7].
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FIG. 4.8. Deletion steps. Each case has a symmetric variant (not shown). The current node x is the
root of subtree A. Roots of lettered subtrees other than A are black. (a) Subcase la. Demotion. (b)
Subcase 1 b. Single rotation.

To join balanced binary trees it is useful to store with each tree root its rank; then
while descending through a tree we can compute the rank of each node visited in
0(1) time per node. To perform join (s1,i, s 2), we compare rank ( s 1 ) with rank (s2).
If rank (s1) rank (s2), we follow right pointers from $, until reaching a node x
with rank (x) = rank (s2). We replace x and its subtree by i, making x the left child

FIG. 4.8 (continued), (c) Subcase Ic. Double rotation, (d) Case 2. Single rotation to produce
terminating instance of Case \. Demotion of bottom node of rank r does not cause a new violation of
property (i).
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and s2 the right child of i. We define the rank of i to be rank (x) + 1, thus making x
and s2 black. Then we rebalance as in an insertion, starting from i. The case
rank (s1) < rank (s2) is symmetric. Such a join takes O( \ rank (s1,) -
rank (s2) 1) = O(log n) time and produces a tree whose root has rank
max {rank (s1), rank (s2)} or max { rank (s1 rank (s2)} + 1; in the latter case both
children of the root are black.

To split a balanced binary tree at an item i, we perform a sequence of joins exactly
as described in §4.1, using the method above for each join. The time bounds for the
joins that construct the left tree form a telescoping series summing to O(log n). This
is also true for the joins that construct the right tree. More precisely, the split
algorithm maintains the following invariant, where x, y, 5, and s2 are the current
node, the previous node and the roots of the left and right trees, respectively (see the
description of split in §1): If y was black in the unsplit tree, then max
[rank (s1), rank (s2)} £ rank (x), and the time spent on the split so far is
O(rank (st) + rank (s2) + rank (x)). Thus a split takes 0(log n) time.

In addition to having an 0(log n) time bound for each of the sorted set operations,
balanced binary trees have other useful properties. All the operations have alterna-
tive top-down implementations that make concurrent search and updating easy [7].
Bottom-up rebalancing after an insertion or a deletion, in addition to needing only
O( 1) rotations, takes O( 1) total time if the time is amortized over a sequence of
updates [8], [9], [11]. Furthermore, time-consuming insertions and deletions are
rare; in particular, operations that take time t occur with a frequency that is an
exponentially decreasing function of t [8], [9]. This makes balanced binary trees
ideal for use as "finger" search trees, in which we maintain one or more pointers to
search starting points; the time for an access, insertion, or deletion is O(log d),
where d is the number of items between the search starting point and the accessed
item [8], [9], [11].

4.3. Self-adjusting binary trees. There is another way to obtain O(log n)
operation times in binary search trees. If we are willing to settle for an amortized
rather than worst-case time bound per operation, we do not need to maintain any
explicit balance condition. Instead, we adjust the tree every time we do an access or
update, using a method that depends only on the structure of the access path. Allen
and Munro [2] and Bitner [5] studied such restructuring heuristics for binary trees,
but none of their methods has an 0(log n) amortized time bound; they are all O(n).
Sleator and Tarjan [15] recently discovered a heuristic that does give an O(log n)
amortized time bound, which we shall study here.

The restructuring heuristic proposed by Sleator and Tarjan is the splay opera-
tion. To splay a binary tree at an internal node x, we begin at jc and traverse the path
to the root, performing a single rotation at each node. We perform the rotations in
pairs, in an order that depends on the structure of the tree. The splay consists of
repeating the following splay step until p(x) is undefined (see Fig. 4.9): If x has a
parent but no grandparent, we rotate at p(x). If x has a grandparent and x and p(x)
are both left or both right children, we rotate at p2(x) and then at p(x). If x has a
grandparent and x is a left and p ( x ) a right child, or vice versa, we rotate at p(x)

Apave
Highlight
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FIG. 4.9. Cases of splay step. Each case has a symmetric variant (not shown), (a) Terminating single
rotation, (b) Two single rotations, (c) Double rotation.

and then at the new parent of x (the old grandparent of x). The overall effect of the
splay is to move x to the root of the tree while rearranging the rest of the original
path to*. (See Fig. 4.10.)

To make binary search trees self-adjusting, we perform a splay during each
access or update operation other than a join. More precisely, after accessing or
inserting an item i we splay at i. After deleting an item i we splay at its parent just
before the deletion (this is the original parent of i's predecessor if i and the
predecessor were swapped). Before splitting at an item i we splay at i. This makes
the split easy, since it moves i to the root: we merely return the left and right
subtrees of the root. In each case the time for the operation is proportional to the
length of the path along which the splay proceeds, which we call the splay path.
Although we have described splay as a bottom-up operation, an appropriate variant
will work top-down [15]. Thus for example when accessing or inserting an item i we
can splay at i while we search for i.

Splaying is reminiscent of path compression and even more of path halving (see
Chapter 2) in the way it changes the tree structure. Although the techniques that
Tarjan and van Leeuwen [17] used to analyze path halving also apply to splaying,
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FIG. 4.10. Splay at node a.

another method gives a simpler analysis. In the remainder of this section we shall
derive Sleator and Tarjan's O(m log n) bound on the total time required for a
sequence of m sorted set operations beginning with no sorted sets, where n is the
number of insert and join operations (items).

We use a credit-debit accounting scheme (see Chapter 2), keeping track only of
credits. We assign to each item i an individual weight iw (i). The individual weights
are arbitrary positive real numbers, whose value we shall choose later. We define the
total weight tw (x) of a node x in a binary search tree to be the sum of the individual
weights of all descendants of x, including x itself. Finally, we define the rank of a
node x to be rank (x) = Llg tw (x) . We maintain the following credit invariant:
any internal node x holds rank (x) credits.

LEMMA 4.2. Splaying a tree with root v at a node x while maintaining the credit
invariant takes 3 (rank (v) — rank (x)) + 1 credits.

Proof. Consider a splay step involving the nodes x, y = p(x), and z = p2(x),
where p denotes the parent function before the step. Let rank and rank', tw and tw'
denote the rank and total weight functions before and after the step respectively. To
this step we allocate 3 (rank' (x) - rank (x)) credits and one additional credit if
this is the last step. There are three cases (see Fig. 4.9).

Case 1. Node z is undefined. This is the last step of the splay, and the extra credit
allocated to the step pays for it. We have rank' (x) = rank (y). Thus the
number of credits that must be added to the tree to maintain the invariant is
rank' (y) — rank (x) ^ rank' (x) - rank (x), which is one third of the
remaining credits on hand.

Case 1. Node z is defined and x and y are both left or both right children. We
have rank' (x) = rank (z). The number of credits that must be added to the
tree to maintain the invariant is rank' (y) + rank' (z) - rank (y) -
rank (x) 2(rank' (x) - rank (x)), which is two thirds of the credits on
hand. If rank' (x) > rank (x), there is at least one extra credit on hand to pay
for the step. Otherwise, rank' (x) = rank (x) = rank (y) = rank (z). Further-
more tw (x) + tw' (z) tw' (x), which implies that rank' (z) < rank' (x). (If
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rank' (z) = rank' (x), tw' (x) > 2rank(x) + 2rank'(z) 2rank '(x)+1, a contradiction.)
Maintaining the invariant thus frees rank (y) + rank (x) - rank' (y) -
rank' (z) 1 credits, one of which will pay for the step.

Case 3. Node z is defined and x is a left and y is a right child, or vice versa. The
credit accounting in this case is the same as in Case 2, with the following
exception: If rank' (x) = rank (x), we have min {rank' (y), rank'(z)}
< rank' (x) since tw' (y) + tw' (z) tw' (x), and maintaining the invariant
frees rank (y) + rank (x) — rank' (y) — rank' (z) = 2 rank' (x)
- rank' (y) - rank' (z) ^ 1 credit to pay for the step.

Summing over all steps of a splay, we find that the total number of credits used is
3 (rank' (x) - rank (x)) + 1 = 3 (rank (v) - rank (x)) + 1, where rank and
rank' denote the rank function before and after the entire splay.

In order to complete the analysis, we must consider the effects of insertion,
deletion, join and split on the ranks of nodes. To simplify matters, let us define the
individual weight of every item to be 1. Then every node has a rank in the range
[0 .. Llg n] ], and Lemma 2 gives a bound of 3 Llg nJ +1 credits for splaying.
Inserting a new item i without splaying takes at most L Ig n J +1 credits, since only
nodes along the path from i to the root of the tree gain in total weight, and of these
only the ones with an old total weight of 2* - 1 for some k [0 .. LIg nJ ] gain (by
one) in rank. Deleting an item i without splaying causes either a net decrease or no
change in the number of credits in the tree. Joining two trees requires placing at
most Llg nJ credits on the new root, and splitting a tree frees the credits (if any) on
the old root. Thus we have the following theorem:

THEOREM 4.1. The total time required for a sequence ofm sorted set operations
using self-adjusting trees, starting with no sorted sets, is O(m log n), where n is the
number of insert and join operations (items).

A more refined analysis using weights other than one shows that self-adjusting
search trees are as efficient in an amortized sense as static optimum search trees, to
within a constant factor [15]. Self-adjusting trees have other remarkable properties
[ 15]. In the next chapter we shall study a problem in which the use of self-adjusting
search trees gives an asymptotically more efficient algorithm than seems possible
with any kind of balanced search trees.
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CHAPTER 5

Linking and Cutting Trees

5.1. The problem of linking and cutting trees. The trees we have studied in
Chapters 2, 3 and 4 generally occur indirectly in network algorithms, as concrete
representations of abstract data structures. Trees also occur more directly in such
algorithms, either as part of the problem statement or because they express the
behavior of the algorithm. In this chapter we shall study a generic tree manipulation
problem that occurs in many network algorithms, including a maximum flow
algorithm that we shall study in Chapter 8.

The problem is to maintain a collection of vertex-disjoint rooted trees that change
over time as edges are added or deleted. More precisely, we wish to perform the
following operations on such trees, each of whose vertices has a real-valued cost (see
Fig. 5.1):

maketree (v): Create a new tree containing the single vertex v, previously in no
tree, with cost zero.

findroot (v): Return the root of the tree containing vertex v.
findcost (v): Return the pair [w, x] where x is the minimum cost of a vertex on

the tree path from v to findroot (v) and w is the last vertex (closest to the root)
on this path of cost x.

addcost (v, x): Add real number x to the cost of every vertex on the tree path
from v to findroot (v).

link (v,w): Combine the trees containing vertices v and w by adding the edge
[v, w]. (We regard tree edges as directed from child to parent.) This operation
assumes that v and w are in different trees and v is a root,

cut (v): Divide the tree containing vertex v into two trees by deleting the edge out
of v. This operation assumes that v is not a tree root.

In discussing this problem we shall use m to denote the number of operations and
n to denote the number of vertices (maketree operations). One way to solve this
problem is to store with each vertex its parent and its cost. With this representation
each maketree, l ink, or cut operation takes O( \) time, and each findroot, findcost, or
addcost operation takes time proportional to the depth of the input vertex, which is
0(n).

By representing the structure of the trees implicitly^ we can reduce the time for
findroot, findcost and addcost to o(log n), amortized over a sequence of operations,
while increasing the time for l ink and cut to O(log n). In the next two sections we
shall study a data structure developed by Sleator and Tarjan [4] that has these
bounds.

59
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FlG. 5.1. Tree operations, (a) Two trees. Numbers in parentheses are vertex costs. Operation
findroot (j) returns a, findcost (j) returns [d, 2]. (b) After addcost (j, - 2), link (m, d), cut (e).

5.2. Representing trees as sets of paths. There are no standard data structures
that directly solve the problem of linking and cutting trees. However, there do exist
methods for the special case in which each tree is a path. In this section we shall
assume the existence of such a special-case method and use it to solve the general
problem.

Suppose we have a way to carry out the following operations on vertex-disjoint
paths, each of whose vertices has a real-valued cost:

makepath (v): Create a new path containing the single vertex v, previously on no
path, with cost zero.

findpath (v): Return the path containing vertex v.
find tail (p): Return the tail (last vertex) of path p.
findcost (p): Return the pair [w, x], where x is the minimum cost of a vertex on

path p and w is the last vertex on p of cost x.
addpathcost (p, x): Add real number x to the cost of every vertex on path p.
join (p, v, q): Combine path p, the one-vertex path containing only v, and path q

into a single path by adding an edge from the tail of p to v and an edge from v to
the head (first vertex) of q. Return the new path. This operation allows either/?
or q to be empty, in which case the corresponding edge is not added.

split (v): Divide the path containing vertex v into at most three paths by deleting
the edges incident to v. Return the pair [p, q], where p is the part of the
original path before but not including v, and q is the part after but not including
v. If v is the head of the original path, p is empty; if v is the tail, q is empty.
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FIG. 5.2. A tree partitioned into solid paths. Path [t, q, p, I, i, d] has head t and tail d.

By using these path operations as primitives, we can solve the problem of linking
and cutting trees. We partition each tree into a set of vertex-disjoint paths and carry
out each tree operation by means of one or more path operations. To define the
paths, we partition the edges of each tree into two kinds, solid and dashed, so that at
most one solid edge enters any vertex. (See Fig. 5.2.) The solid edges partition the
tree into vertex-disjoint solid paths.

To represent the dashed edges, we store with each solid path p its successor,
defined to be the vertex entered by the dashed edge leaving the tail of/?; if the tail of

FlG. 5.3. Exposing a vertex v.
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p is a tree root, its successor is null. To carry out the tree operations we need the
following composite operation on paths (see Fig. 5.3):

expose (v): Make the tree path from v to findroot (v) solid by converting dashed
edges along the path to solid and solid edges incident to the path to dashed.
Return the resulting solid path.

Our implementation of the dynamic tree operations identifies each path by a
vertex on it and uses null to identify the empty path. The following programs
implement the six tree operations with the help of expose:

procedure maketree (vertex v);
makepath (v);
successor (v) == null

end maketree;

vertex function findroot (vertex v);
return findtail (expose (t/))

end findroot;

list function findcost (vertex v);
return findpathcost (expose (v))

end findcost;

procedure addcost (vertex v, real x);
addpathcost (expose (v), x)

end addcost;

procedure link (vertex v, w);
1. successor (join (null, expose (p), expose (w))) = null
end link;

procedure cut (vertex v);
path p, q;

1. expose (v);
3. [p, q] ••= split (v);

successor (v) = successor (q) = null
end cut;

Notes. The expose in line 1 of link makes v into a one-vertex solid path. After line
2 in cut, vertex v has no entering solid edge; thus the path p returned by the split in
line 3 is empty. Since in cut vertex v is not a tree root, the path q returned in line 3 is
nonempty.

The following program implements expose:

path function expose (vertex v);
path p, q, r; vertex w;
p = null;
do v null

w = successor (findpath (v));
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1. [q, r] := split (v);
if q null successor (q) •= v fi;

2. p := join (p,v, r);
v := W

od;
successor (p) := null

end expose;

Note. The solid edge from v to the head of r broken by the split in line 1 is restored
by the join in line 2. Each iteration of the do loop converts to solid the edge from
the tail of p to v (if p null) and to dashed the edge from the tail of q to v (if
q null).

We shall call each iteration of the do loop in expose a splice. Each tree operation
takes 0(1) path operations and at most two expose operations. Each splice within an
expose takes 0(1) path operations. At this level of detail, the only remaining task is
to count the number of splices per expose. In the remainder of this section we shall
derive an O(m log n) bound on the number of splices caused by a sequence of m tree
operations. This bound implies that there are 0(log n) splices per expose amortized
over the sequence.

To carry out the proof we need one new concept. We define the size of a vertex v
to be the number of descendants of v including v itself. We define an edge from v to
its parent w to be heavy if 2 • size (v) > size (w) and light otherwise. The following
result is obvious.

LEMMA 5.1. If v is any vertex, there is at most one heavy edge entering v and
there are at most L Ig nJ light edges on the tree path from v to findroot (v).

To bound the number of splices, we consider their effect on the number of tree
edges that are both solid and heavy. There are no such edges (indeed, there are no
edges at all) initially, and there are at most n - 1 such edges after all the tree
operations. Consider exposing a vertex. During the expose, each splice except the
first converts a dashed edge to solid. At most Llg n of these splices convert a light
dashed edge to solid. Each splice converting a heavy dashed edge to solid increases
the number of heavy solid edges by one, since the edge it makes dashed, if any, is
light. Thus m tree operations cause a total of m (Llg nJ +1) splices plus at most
one for each heavy solid edge created by the tree operations.

To bound the number of heavy solid edges created, we note that all but n - 1 of
them must be destroyed. Each expose destroys at most Llg n +1 heavy solid
edges, at most one for each splice that does not increase the number of heavy solid
edges. Links and cuts can also destroy heavy solid edges by changing node sizes.

An operation link (v, w) increases the size of all nodes on the tree path from w to
findroot (w), possibly converting edges on this path from light to heavy and edges
incident to this path from heavy to light. After the operation expose (w) in the
implementation of l ink, the edges incident to the path are dashed, and adding the
edge [v, w] thus converts no solid edges from heavy to light.

An operation cut (v) decreases the size of all nodes on the tree path from the
parent of v to findroot (v), converting at most Llg wj heavy edges to light. The cut
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also deletes a solid edge that may be heavy. Thus a cut destroys at most Llg n + 1
heavy solid edges, not including those destroyed by the expose that begins the cut.

Combining our estimates, we find that at most (3m/2) (Llg nJ +1) heavy solid
edges are destroyed by m tree operations, since there are at most m/2 cuts (an edge
deleted by a cut must have been added by a previous link). Thus the total number of
splices is at most (5m/2) (Llg n] + 1) + n - 1, and we have the following theorem:

THEOREM 5.1. A sequence of m tree operations including n maketree operations
requires O(m) path operations and in addition at most m exposes. The exposes
require O(m log n) splices, each of which takes O( 1) path operations.

5.3. Representing paths as binary trees, To complete our solution to the problem
of linking and cutting trees, we need a way to represent solid paths. We shall
represent each solid path by a binary tree whose nodes in symmetric order are the
vertices on the path. (See Fig. 5.4.) Each node x contains three pointers: parent ( x ) ,
left (x) and right (x), to its parent, left child and right child, respectively. We use
the root of the tree to identify the path; thus the root contains a pointer to the
successor of the path. To distinguish between the trees defined by the link and cut
operations and the trees representing solid paths, we shall call the latter solid trees.

To represent vertex costs, we use two real-valued fields per node. For any vertex
jc, let cost (x) be the cost of x, and let mincost (x) be the minimum cost of a
descendant of x in its solid tree. With x we store Acos/ (x) and min (x), defined as
follows (see Fig. 5.4):

Note that cost (x) 0 for any vertex x and min (x) 0 for any nonroot
vertex x. Given cost and min, we can compute mincost (x) for any vertex x by

FlG. 5.4. Representation of a path, (a) Path with head a and tail f. (b) Binary tree representing the
path. Numbers labeling nodes are cost, mincost. cost, and Am/Vi, respectively.



L I N K I N G AND CUTTING TREES 65

summing min along the solid tree path from the root to x and compute cost (x) as
mincost (x) + cost (x).

With this representation, we can perform a single or double rotation in O( 1) time.
We can also perform in 0(1) time two operations that assemble and disassemble
solid trees:

assemble (u, v, w): Given the roots u, v, w of three solid trees, such that the tree
with root v contains only one node, combine the trees into a single tree with root
v and left and right subtrees the trees rooted at u and w, respectively. Return v.

disassemble (v): Given the root v of a solid tree, break the tree into three parts, a
tree containing only v and the left and right subtrees of v. Return the pair
consisting of the roots of the left and right subtrees.

Note. The effect of a rotation depends on whether or not the rotation takes place
at the root of a solid tree. In particular, if we rotate at a root we must move the
successor pointer for the corresponding solid path from the old root to the new
root.

Since assembly, disassembly and rotation are 0(l)-time operations, we can use
any of the kinds of binary search trees discussed in Chapter 4 to represent solid
paths. We perform the six path operations as follows:

makepath (v): Construct a binary tree of one node, v, with min (v) =
cost (v) = 0.

findpath (v): In the solid tree containing v, follow parent pointers from v until
reaching a node with no parent; return this node.

findtail (p): Node p is the root of a solid tree. Initialize vertex v to be p and
repeatedly replace v by right (v) until right (v) = null. Then return v.

findpathcost (p): Initialize vertex w to be p and repeat the following step unti l
cost (w) = 0 and either right (w) = null or min (right (w)) > 0: If

right (w) null and min (right (w)) = 0, replace w by right (w); otherwise if
cost (w) > 0 replace w by left (w). (In the latter case min (left (w)) = 0.)
Once the computation of w is completed, return [w, Aw/« (p)].

addpathcost (p, x): Add x to min (p).
join (p, v, q): Join the solid trees with roots P, v and q using any of the methods

discussed in Chapter 4 for joining search trees.
split (v): Split the solid tree containing node v using any of the methods discussed

in Chapter 4 for splitting search trees.

Both makepath and addpathcost take 0(1) time. The operations findpath,
findtail and findpathcost are essentially the same as an access operation in a search
tree (although findpath proceeds bottom-up instead of top-down), and each such
operation takes time proportional to the depth of the bottommost accessed node.
Both join and split are equivalent to the corresponding operations on search trees. If
we use balanced binary trees to represent the solid paths, the time per path
operation is 0(log n), and by Theorem 5.1 a sequence of AW tree operations selected
from maketree, findroot, findcost, addcost, l ink and cut takes O(m (log n)2) time.
The ideas behind this result are due to Galil and Naamad [2] and Shiloach [3].
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Since the successor field is only needed for tree roots and the parent field is only
needed for nonroots, we can save space in the implementation of the tree operations
by storing parents and successors in a single field, if we store with each vertex a bit
indicating whether it is a solid tree root. Another way to think of the data structure
representing a tree T is as a virtual tree T'\ T' has the same vertex set as T and has a
parent function parent' defined as follows (see Fig. 5.5):

That is, T" consists of the solid trees representing the solid paths of T connected by
edges corresponding to the dashed edges of T. To distinguish between a virtual tree
T" and the tree T it represents, we shall call the latter an actual tree.

We can improve the O(m(log n)2) time bound for m tree operations by a factor of
log n if we use self-adjusting trees rather than balanced trees to represent the solid
paths. This also has the paradoxical effect of simplifying the implementation. Let

FIG. 5.5. An actual tree and its virtual tree, (a) Actual tree, (b) Virtual tree.
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splay (x) be the operation of splaying a solid tree at a node x. Recall that splay (x)
moves x to the root of the tree by making single rotations. The following programs
implement the path operations:

procedure makepath (vertex v};
parent (v) := left (v) := right (v) := null;

cost (v) = min (v) == 0
end makepath;

vertex function findpath (vertex v);
splay (v);
return v

end findpath;

list function findpathcost (path p);
do right (p) null and min (right (p)) = 0 p: = right (p)
| (right (p) = null or min (right (p)) > 0) and cost (p) > 0 p ;= left (p)
od;
splay (p);
return [p, min (p)]

end findpathcost;

vertex function findtail (path p):
do right (p) null p := right (p) od;
splay (p);
return p

end findtail;

procedure addpathcost (path p, real x);
min (p) := min (p) + x

end addpathcost;

procedure join (path7, v, q);
assemble (p, v, q)

end join;

list function split (vertex v);
splay ( v ) ;
return disassemble (v)

end split;

To analyze the running time of this implementation, we use the analysis of
splaying given in §4.3. Recall that we have defined the size of a vertex v in an actual
tree T to be the number of descendants of v, including v itself. We define the
individual weight of a vertex v as follows:
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We define the total weight tw (v) of a vertex v to be the sum of the individual
weights of the descendants of vin the solid tree containing v. If v is any vertex in a
tree, tw (v) is the number of descendants of v in the virtual tree containing it. Also
1 tw (v) n for all vertices v,

Let the rank of a vertex v be rank (v) = Llg tw (v)J . Suppose we use the
accounting scheme of §4.3 to keep track of the time needed for operations on solid
trees. Recall that we must keep rank (v) credits on each vertex v and that
3 (rank (u) - rank (v)) + 1 credits suffice to maintain this invariant and to pay
for a splay at a vertex v in a solid tree with root u. Since 0 rank (v) Ig n for any
vertex v, this means that any solid path operation takes O(log n) credits.

The heart of the matter is the analysis of expose. We shall prove that a single
expose takes O(log n) credits plus 0(1) credits per splice. Consider a typical splice.
Let v be the current vertex, u the root of the solid tree containing v, and w the parent
of u in the virtual tree. Referring to the program implementing expose, the
operation findpath (v) that begins the splice takes 3 (rank (u) - rank (v)) + 1
credits and makes v the root of its solid tree. After this the operations split (v) and
join (p, v, r) take O( 1) time and do not change tw (v), since tw (v) is the number of
descendants of v in the virtual tree, and the effect of the join and split on the virtual
tree is merely to change from dashed to solid or vice versa at most two virtual edges
entering v. (See Fig. 5.6.) Thus one additional credit pays for the split, the join and

FIG. 5.6. Effect of a splice on a virtual tree, (a) Relevant part of virtual tree after operation
findpath (v). Triangles denote solid subtrees. Vertex v is now the root of its solid tree, (b) After
completing the splice.
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the rest of the splice. No ancestor of w in the virtual tree has its individual or total
weight affected by the splice; thus no credits are needed to maintain the credit
invariant on other solid trees. Vertex w, which is the next current vertex, has rank at
least as great as that of u.

Summing over all splices during an expose, we find the total number of credits
needed is 3 (rank (u) — rank (v)) plus two per splice, where v is the vertex exposed
and M is the root of the virtual tree containing v. This bound is O(log n) plus two per
splice. By Theorem 5.1 the total number of credits for all m exposes caused by m
tree operations is O(m log n).

We must also account for the fact that link and cut change the total weights of
vertices and thus affect the credit invariant. Consider an operation l ink (v, w). This
operation joins the empty path, the one-vertex path formed by exposing v, and the
path formed by exposing w into a single solid path. The only effect on total weight is
to increase the total weight of v, requiring that we place O(log n) additional credits
on v. Consider the operation cut (v). After the operation expose ('v), the remaining
effect of the cut is to delete the solid edge leaving v, which changes no individual
weights and only decreases the total weights of some of the ancestors of v in the
actual tree originally containing it. This only releases credits.

FIG. 5.7. Everting a tree. (a) A rooted tree, (b) After the operation evert (j).
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Combining these estimates we have the following theorem:
THEOREM 5.2. If we use self-adjusting binary trees to represent solid paths, a

sequence ofm tree operations including n maketree operations requires O(m log n)
time.

5.4. Remarks. We can add other operations to our repertoire of tree operations
without sacrificing the bound of 0(log n) amortized time per operation. Perhaps the
most interesting is evert (v), which turns the tree containing vertex v "inside out" by
making v the root. (See Fig. 5.7.) When this operation is included the data structure
is powerful enough to handle problems requiring linking and cutting of free
(unrooted) trees; we root each tree at an arbitrary vertex and reroot as necessary
using evert. We can associate costs with the edges of the trees rather than with the
vertices. If worst-case rather than amortized running time is important, we can
modify the data structure so that each tree operation takes O(log n) time in the
worst case; the resulting structure uses biased search trees [1] in place of self-
adjusting trees and is more complicated than the one presented here. Details of all
these results may be found in Sleator and Tarjan [4].
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CHAPTER 6

Minimum Spanning Trees

6.1. The greedy method. In the last half of this book we shall use the data
structures developed in the first half to solve four classical problems in network
optimization. A network is a graph, either undirected or directed, each of whose
edges has an associated real number. The object of a network optimization problem
is to find a subgraph of a given network that has certain specified properties and that
minimizes (or maximizes) some function of the edge numbers. In this chapter we
shall study one of the simplest problems of network optimization, the minimum
spanning tree problem: given a connected undirected graph each of whose edges has
a real-valued cost, find a spanning tree of the graph whose total edge cost is
minimum. We shall denote the cost of an edge e = \v, w} by cost (e) or, to avoid
extra brackets, by cost (v, w).

To solve this problem we use a simple incremental technique called the greedy
method: we build up a minimum spanning tree edge by edge, including appropriate
small edges and excluding appropriate large ones, until at last we have a minimum
spanning tree. We shall formulate the greedy method in a way general enough to
include all known efficient algorithms for the problem; this leaves us room to fill in
the details of the method to make it as efficient as possible.

To make the greedy method concrete, we shall describe it as an edge-coloring
process. Initially all edges of the graph are uncolored. We color one edge at a time
either blue (accepted) or red (rejected). To color edges we use two rules that
maintain the following color invariant:

There is a minimum spanning tree containing all of the blue edges and none
of the red ones.

The color invariant implies that when all the edges are colored, the blue ones form a
minimum spanning tree.

To formulate the coloring rules we need the notion of a cut. A cut in a graph G =
[V, E] is a partition of the vertex set V into two parts, XandX = V -_X. An edge
crosses the cut if it is incident to X (one end is in X and the other in X). We shall
sometimes regard a cut as consisting of the edges crossing it, but it is important to
remember that technically a cut is a vertex partition.

The greedy method uses two coloring rules:
Blue rule. Select a cut that no blue edges cross. Among the uncolored edges

crossing the cut, select one of minimum cost and color it blue.
Red rule. Select a simple cycle containing no red edges. Among the uncolored

edges on the cycle, select one of maximum cost and color it red.
The method is nondeterministic: we are free to apply either rule at any time, in
arbitrary order, until all edges are colored.

71
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THEOREM 6.1. The greedy method colors all the edges of any connected graph
and maintains the color invariant.

Proof. First we prove that the greedy method maintains the color invariant.
Initially no edges are colored, and any minimum spanning tree satisfies the
invariant; there is at least one minimum spanning tree since the graph is connected.
Suppose the invariant is true before an application of the blue rule. Let e be the edge
colored blue by the rule and let T be a minimum spanning tree satisfying the
invariant before e is colored. If e is in T, then T satisfies the invariant after e is
colored. If e is not in 7, consider the cut X, X to which the blue rule is applied to
color e. There is a path in T joining the ends of e, and at least one edge on this path,
say e', crosses the cut. By the invariant no edge of T is red, and the blue rule implies
that e' is uncolored and cost (er) cost (e). Adding e to T and deleting e' produces a
minimum spanning tree T' that satisfies the invariant after e is colored.

The following similar argument shows that the red rule maintains the invariant.
Let e be an edge colored red by the rule and let T be a minimum spanning tree
satisfying the invariant before e is colored. If e is not in T, then T satisfies the
invariant after e is colored. Suppose e is in T. Deleting e from T divides T into two
trees that partition the vertices of G; e has one end in each tree. The cycle to which
the red rule was applied to color e must have at least one other edge, say e', with an
end in each tree. Since e' is not in T, the invariant and the red rule imply that e' is
uncolored and cost (e') cost (e). Adding e' to T and deleting e produces a new
minimum spanning tree T' that satisfies the invariant after e is colored. We
conclude that the greedy method maintains the color invariant.

Now suppose that the method stops early; that is, there is some uncolored edge e
but no rule applies. By the invariant, the blue edges form a forest, consisting of a set
of trees that we shall call blue trees. If both ends of e are in the same blue tree, the
red rule applies to the cycle formed by e and the path of blue edges joining the ends
of e. If the ends of e are in different blue trees, the blue rule applies to the cut one of
whose parts is the vertex set of a blue tree containing one end of e. Thus an
uncolored edge guarantees the applicability of some rule, and the greedy method
colors all the edges.

The greedy method applies to a wide variety of problems besides the minimum
spanning tree problem. The proper general setting of the method is matroid theory
[19]. In the special case of finding minimum spanning trees, especially efficient
implementations are possible. In §6.2 we shall examine three well-known minimum
spanning tree algorithms that are versions of the greedy method. In §6.3 we shall
develop a relatively new algorithm that is the fastest yet known for sparse graphs.

6.2. Three classical algorithms. The minimum spanning tree problem seems to
be the first network optimization problem ever studied; its history dates at least to
1926. Graham and Hell [14] have written an excellent historical survey of the
problem. Boruvka [4] produced the first fully realized minimum spanning tree
algorithm. The same algorithm was rediscovered by Choquet [7], Lukaszewicz et
al. [20]andSollin[l].

To understand Boruvka's algorithm, we need to study the behavior of the greedy
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method. Recall our definition in the proof of Theorem 6.1 that a blue tree is a tree in
the forest defined by the set of blue edges. Initially there are n blue trees, each
consisting of one vertex and no edges. Coloring an edge blue combines two blue trees
into one. The greedy method combines blue trees two at a time until finally only one
blue tree, a minimum spanning tree, remains.

Boruvka's algorithm begins with the initial set of n blue trees and repeats the
following step until there is only one blue tree (see Fig. 6.1).

COLORING STEP (Boruvka). For every blue tree T, select a minimum-cost edge
incident to T. Color all selected edges blue.

Since every edge has two ends, an edge can be selected twice in the same
execution of the coloring step, once for each end. Such an edge is only colored once.
Boruvka's algoritfim is guaranteed to work correctly only if all the edge costs are
distinct, in which case the edges can be ordered so that the blue rule will color them
one at a time. If the edge costs are nondistinct, we can break ties by assigning
numbers to the edges (or vertices) and ordering edges lexicographically by cost and
number (or cost and end numbers). Boruvka's algorithm, though old, is closely
related to the new fast algorithm we shall study in §6.3. There are several ways to
implement the algorithm, which we shall not discuss here except to note that the
method is well suited for parallel computation.

The second and most recently discovered of the classical algorithms is that of

FIG. 6.1. Execution of Boruvka's algorithm, (a) Input graph, (b) First step. Vertex a selects edge
{a, c}, b and d select {b, d), c selects \c, d }, e and g select \e, g} and f selects \c,f\. (c) Second step. Both
blue trees select \d,e\.
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FIG. 6.2. Execution of Kruskal's algorithm. Red edges are dashed, (a) Input graph, (b) After the
first four steps. Edges \b, d\, \c, d\, \e, g\, and {a, c} are colored blue, (c) After the next three steps.
Edges \a, b} and {b, c\ are colored red; [d, e\ is colored blue, (d) After two more steps. Edge [d, g] is
colored red and {c,f\ is colored blue.

Kruskal [18]. Kruskal's algorithm consists of applying the following step to the
edges in nondecreasing order by cost (see Fig. 6.2):

COLORING STEP (Kruskal). If the current edge e has both ends in the same blue
tree, color it red; otherwise color it blue.

To implement Kruskal's algorithm, we must solve two problems: ordering the
edges by cost and representing the blue trees so that we can test whether two vertices
are in the same blue tree. The simplest way to solve the former problem is to sort the
edges by cost in a preprocessing step. The latter problem is a version of the disjoint
set union problem discussed in Chapter 2, and we can use the operations of makeset,
find and link to maintain the vertex sets of the blue trees.

The following program implements Kruskal's algorithm using these ideas. The
program accepts as input sets of the vertices and edges in the graph and returns a set
of the edges in a minimum spanning tree.

set function minspantree (set vertices, edges);
set blue',
blue = { };
edges = sort edges by cost;
for v c vertices makeset (v) rof;
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for {v, w} e edges: find (v) find (w)
link (find ( ), find (w)); blue :-= blue u {{v, w}}

rof;
return blue

end minspantree;

The sorting step in the implementation requires O(m log n) time. Finding a
minimum spanning tree given a sorted edge list requires O(m, (m, n)) time by the
results of Chapter 2. Thus the total running time is O(m log n). This algorithm is
best in situations where the edges are given in sorted order or can be sorted fast, for
instance when the costs are small integers and radix sorting can be used. In such
cases the running time is O(m (m,n)).

The third classical minimum spanning tree algorithm was discovered by Jarnik
[16] and rediscovered by Prim [22] and Dijkstra [9]; it is commonly known as
Prim's algorithm. The algorithm uses an arbitrary starting vertex 5 and consists of
repeating the following step n - 1 times (see Fig. 6.3):

COLORING STEP (Prim). Let T be the blue tree containing s. Select a minimum-
cost edge incident to T and color it blue.

Prim's algorithm is a kind of "shortest-first" search. (We shall study another kind
of shortest-first search in Chapter 7.) Since the algorithm builds only one nontrivial

FIG. 6.3. Execution of Prim's algorithm, (a) Input graph. Vertex a is the start vertex, (b) After three
steps. Edges fa, c\, \c, d}, and \d, b} become blue, (c) After four steps. Edge \d, e\ becomes blue, (d) After
six steps. Edges \e, g\ and \ c , f ] become blue.
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blue tree, we can implement the method without using a data structure for disjoint
set union. We need only a single heap.

Although Jarnik gave no detailed implementation, both Prim and Dijkstra did.
Their idea is as follows: Let T be the blue tree containing s. We say v borders T if v
is not in T but some edge is incident to both v and T. With each vertex v bordering T
we associate a light blue edge e that is a minimum-cost edge incident to v and T.
(Dijkstra [10] calls these edges "ultraviolet.") The light blue edges are candidates
to become blue; the blue and light blue edges together form a tree spanning T and its
bordering vertices. To carry out a coloring step, we select a light blue edge of
minimum cost and color it blue. This adds a new vertex, say f, to T. We complete the
step by examining each edge {v, w\ incident to v. If w is not in T and has no incident
light blue edge, we color {v, w\ light blue. If w is not in Tbut w has an incident light
blue edge, say e, of greater cost than {v, w}, we color e red and color {v, w} light blue.
(See Fig. 6.4.)

Prim's algorithm implemented as described above has a running time of O(n2),
O(n) per coloring step. We can make the method faster on sparse graphs by
maintaining a heap (see Chapter 3) of the vertices bordering T and using the
appropriate heap operations to carry out each coloring step. The key of a vertex in
the heap is the cost of the incident light blue edge.

The program below implements this method. As input, the program needs a list of
the vertices in the graph and the start vertex. The program assumes that, for each

FIG. 6.4. Efficient implementation of Prim's algorithm. Light blue edges are dashed, (a) Input
graph. Vertex a is the start vertex, (b) After three steps, (c) After four steps. Edge \d, e} becomes blue,
{e, g\ becomes light blue, and \d, g\ and {b, e} become red.
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vertex v, edges (v) is the set of edges incident to v. For each vertex v it maintains an
incident edge blue (v) and a real number key (v) defined as follows: Ff v is neither in
Tnor borders T, blue (v) is undefined and key (v) is infinity. If v borders 7, blue (v)
is the light blue edge incident to v and key (v) is the cost of the edge. If v is in T,
blue (v) is the blue edge whose coloring caused v to be added to T and key (v) is
minus infinity. When the program halts, the edges blue (v) for v s form a
minimum spanning tree.

The program is designed to use a d-heap (see §3.2) as proposed by Johnson [17].
In particular it uses the operation siftup (v) to restore the heap after decreasing the
key of vertex v (by changing its incident light blue edge). The program must also be
able to test vertices for heap membership. The key fields can be used for this purpose,
since if the code below is written appropriately, a vertex v is in the heap if and only
if key (v) is finite. The heap indices (see § 3.2) also provides this information.

procedure minspantree (set vertices, vertex s);
vertex v; heap h;
for v c vertices key (v) = rof;
h = makeheap({ });
v := s;
do v null

key (v) = — ;
for {v, w} c edges (v): cost (v, w) < key (w>)

key (w) := cost (v, w);
blue(w) := {f, w};
if w h insert (w, h) \ w c h siftup (w, h ' (w), h) fi

rof;
v ••= deletemin (h)

od
end minspantree;

Remark. It is possible to use a real-valued function to define key, thus saving the
space of one field per vertex.

The running time of this implementation is dominated by the heap operations, of
which there are n - 1 deletemin operations, n - 1 insert operations, and at most
m - n + 1 siftup operations. By the analysis of §3.2, the total running time is
O(n d logdn + m logdn). If we choose d = 2 + m/nl , we obtain a time bound of
O(m log ( 2 + m / n)n). If m = ( n l + c ) for some positive e, the running time is O(m/e).
Thus Prim's algorithm with Johnson's implementation is well suited for dense
graphs, and the method is asymptotically worse than Kruskal's only if the edges are
presorted.

6.3. The round robin algorithm. All three of the algorithms presented in §6.2 use
mainly the blue rule. (It is also possible to find minimum spanning trees using
mainly the red rule, but such methods seem to be less efficient.) The most general
blue rule algorithm consists of beginning with the init ial blue trees and repeating the
following step n — 1 times:
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COLORING STEP (round robin). Select a blue tree. Find a minimum-cost edge
incident to this tree and color it blue.

Kruskal's algorithm builds blue trees in an irregular fashion dictated by the edge
costs, Prim's algorithm builds only one nontrivial blue tree, and Boruvka's
algorithm builds blue trees uniformly throughout the graph. By judiciously imple-
menting a Boruvka-like algorithm using the appropriate data structures, we can
obtain a method that is faster on sparse graphs than is any of the classical
algorithms. Yao [29] was the first to propose such a method. His algorithm runs in
O(m log log n) time but needs a linear-time selection algorithm [2], [24] and is thus
not very practical. We shall describe a similar but more practical O(m log log n)-
time algorithm proposed by Cheriton and Tarjan [6].

To implement the general blue rule algorithm, we need two data structures for
each blue tree. First, we need a way to represent the set of vertices in each tree.
Second, we need a heap of the edges with at least one end in the tree that are
candidates for becoming blue; the cost of an edge is its key in the heap. To represent
the vertex sets, we use the data structure of Chapter 2, as in our implementation of
Kruskal's algorithm. To represent the edge heaps, we use the leftist heaps of §3.3
with lazy melding and lazy deletion; we declare an edge "deleted" if its ends are in
the same blue tree. We never explicitly mark edges deleted; instead, they are deleted
implicitly when blue trees are combined.

FIG. 6.5. Execution of the round-robin algorithm, (a) Input graph. The queue contains the vertex
sets of the blue trees, (b) After the initial pass through the queue. Edges [a, c}, \b, d\, \e, g\, and \c,f\
become blue, (c) After another pass. Edges \c, d\and \d, e\ become blue.
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We also need a way to select blue trees for application of the blue rule. For this
purpose we use a queue containing all the blue trees. To carry out a coloring step, we
remove the first tree, say T1,, from the front of the queue and perform a findmin on
its heap. We color blue the edge, say e, returned by the findmin. We remove from
the queue the other tree, say T2, incident to e. We update the vertex sets and edge
heaps to reflect the combining of T1 and T2 and add the new blue tree to the rear of
the queue. (See Fig. 6.5.) We call this method the round robin algorithm.

The following program implements this method. Input to the program is the set of
vertices in the graph and, for each vertex v, the set edges (v) of incident edges. To
represent each blue tree, the program uses its canonical vertex as defined by the
disjoint set union algorithm (see §2.1). The queue for selecting blue trees consists of
a list of canonical vertices. For each canonical vertex v, h(v) is the edge heap of the
blue tree containing v. The predicate deleted (e) returns true if the ends of e are in
the same blue tree. The program returns a set of the edges in a minimum spanning
tree.

set function minspantree (set vertices);
set blue;
map h;
list queue;
vertex v, w;
blue ={ };
queue = [ ]
for v c vertices makeset (v); h(v) = makeheap (edges (v));

queue ;= queue & [v] rof;
do|queue |> 1

\v, w] = findmin (h(queue (1)));
blue = blue u {{v, w}\;
queue = queue - |find (v), find (w)};
h(link (find (v), find (w))) = meld (A(find (v)), h(find (w)));
queue = queue & [find (v)]

od;
return blue

end minspantree;

predicate deleted (edge {v, w});
return find (v) = find (w)

end deleted;

real function key (edge e);
return cost (e)

end key;

Notes. Every edge {v, w} is initially in two heaps, h(v) and h(w). When such an
edge is colored blue, the corresponding link operation automatically deletes both
copies from the heap associated with the new blue tree. Since arbitrary elements
must be deleted from the queue (by the assignment "queue = queue - {find (v),
find (w)}"), it is best to implement the queue as a doubly linked list or as an array of
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vertices, each with an index giving its position in the array. (See §1.3.) Then the
time for a deletion is O(l).

Let us analyze the running time of this algorithm. The running time is O(m) not
counting set and heap operations. The time for all the makeset and link operations is
O(n). If we assume that the time per find is O( 1 ), then the heap operations dominate
the running time. We shall justify this assumption later.

To simplify the discussion we shall speak of the blue trees themselves rather than
the canonical vertices as being on the queue. For i = 1 , 2, • • • , n we define Ti to be
the blue tree selected during the ith coloring step, mi to be the number of edges in
the heap associated with Ti when Ti, is selected, and k, to be the number of edges
purged from this heap during the ith findmin operation. We divide the execution of
the algorithm into passes as follows. Pass zero consists of the selection and
processing of blue trees init ial ly on the queue. For j > 0, pass j consists of the
selection and processing of the trees added to but not deleted from the queue during
pass j - 1.

LEMMA 6.1. A blue tree on the queue during pass j contains at least 2j vertices.
Thus after at most Llg n passes there is a single blue tree, and the algorithm
stops.

Proof. Immediate by induction on j, since for j > 0 a blue tree on the queue
during pass j consists of a combination of two or more blue trees on the queue during
passy - 1.

LEMMA 6. 2.

Proof. Any two blue trees selected and processed during the same pass are vertex
disjoint, since they are on the queue simultaneously. Thus the total size of all heaps
processed during a single pass is at most 2m + n — 1: each actual edge occurs in at
most two heaps, and there are at most n - 1 dummy edges corresponding to lazy
melds. (See §3.3.) The lemma follows from Lemma 6. 1 .

Now we can bound the time for the heap operations. The time for all the
makeheap operations is O(m). The time for melds is 0(1) per meld, totalling O(n)
for all n - 1 melds. The time for the ith findmin is 0(ki max |l, log mi, /(A:, +l)}).To
estimate the total time for findmin operations, we divide them into two types: the ith
findmin is small if ki m i/(lg n)2 — \ and large otherwise. The total time for small
findmin operations is

by Lemma 6.2. The total time for large findmins is
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since
melds

including the n - 1 dummy edges created by the

THEOREM 6.2. The round robin algorithm, implemented using leftist trees with
lazy melding and lazy deletion, runs in O(m log log n) time.

Proof. The analysis above gives a time bound of O(m log log n) with the finds
counted at 0(1) time per find. This means that there are O(m log log n) finds,
which take O((m log log n) (m log log n, n)) = O(m log log n) time (see §2.2).
This gives the theorem.

On sparse graphs, the round robin algorithm is asymptotically faster than any of
the classical algorithms. On dense graphs it is slower by a factor of O(log log n) than
Prim's algorithm, although in practice the O(m log log n) time bound is likely to be
overly pessimistic. As a matter of theoretical interest, we can improve the running
time of the round robin algorithm to O(m log log (2+m/n)n) time by "condensing" the
graph at appropriate intervals, discarding from the edge heaps every edge with both
ends in the same blue tree and all but a minimum cost edge between each pair of
blue trees [6], [27]. The round robin algorithm with condensing is asymptotically as
fast as any known minimum spanning tree algorithm, for any graph density.

6.4. Remarks. Not surprisingly, there are many results on special cases and
variants of the minimum spanning tree problem. We conclude this chapter by
mentioning some of the more interesting of such results. Other results may be found
in the survey by Maffioli [21].

An on-line algorithm. Suppose we are presented with the edges of the graph one
at a time in arbitrary order. We can build a minimum spanning tree on-line, as
follows. We maintain a set of blue trees. To process an edge e, we color it blue. If this
forms a cycle of blue edges, we discard a maximum-cost blue edge on the cycle.
Using the data structures of Chapters 2 and 5 (the latter augmented to allow
everting a tree), we can implement this algorithm to run on O(m log n) time.

Alternative cost functions. Minimum spanning trees are minimum with respect
to any symmetric nondecreasing function of the edge costs [15].

Verification, sensitivity analysis, and updating. Three related problems are
solvable in O(ma(m, n)) time. Given a spanning tree, we can test whether it is
minimum [26]. Given a minimum spanning tree, we can test by how much the cost
of each edge can be increased or decreased without affecting the minimality of the
tree [28], Given a minimum spanning tree, we can find for each tree edge e a
minimum-cost substitute edge e' such that, if e is deleted from the graph, replacing
it in the old minimum spanning tree by e' produces a minimum spanning tree in the
new graph [26].

Linear-time special cases. Let 5 be a class of graphs closed under condensation of
an edge and such that every graph in S has O(n) edges, where the constant depends
on S but not on the graph. Then there is an O(n)-time algorithm to find minimum
spanning trees for graphs in S. As examples of this result, we can find a minimum
spanning tree in a planar graph in O(n) time [6] and we can in O(n) time update a
minimum spanning tree if a new vertex and incident edges are added to a graph
whose minimum spanning tree is known [23].
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Degree constraints. Suppose we wish to find a minimum spanning tree subject to
a degree constraint at one or more vertices, i.e. at certain vertices v, the tree can
have no more than d(v) incident edges. With a degree constraint at only one vertex,
the problem is linear-time reducible to the unconstrained problem [12]. With
degree constraints at independent (pairwise nonadjacent) vertices, the problem is a
special case of weighted matroid intersection [19] and is solvable in polynomial
time. With degree constraints at all vertices the problem is NP-complete [13].

Directed minimum spanning trees. Given a directed graph with edge costs and a
distinguished root r, there is an O(min {m log n, n2})-time algorithm to find a
minimum spanning tree rooted at r. The algorithm was discovered independently by
Chu and Liu [8], Edmonds [11] and Bock [3]; Tarjan [25] gave an implementation
with the claimed running time (see also [5]).
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CHAPTER 7

Shortest Paths

7.1. Shortest-path trees and labeling and scanning. Another important network
optimization problem is that of finding shortest paths. Let G be a directed graph
whose edges have real-valued (possibly negative) lengths. We shall denote the
length of an edge [v, w] by length (v, w). The length of a path p, denoted by
length (p), is the sum of the lengths of the edges on p. A shortest path from a vertex
5 to a vertex f is a path from s to t whose length is minimum. The shortest-path
problem is to find a shortest path from s to t for each member [s, t] of a given
collection of vertex pairs. The paper of Dreyfus [7] is a good survey of early work on
this problem. We shall consider four versions of the problem:

The single pair problem. Find a shortest path from a given source s to a given
sink t.

The single source problem. Given a source s, find a shortest path from 5 to v for
every vertex v.

The single sink problem. Given a sink t, find a shortest path from v to t for every
vertex v.

The all pairs problem. For every pair of vertices s and t, find a shortest path from
s tot.

The single source and single sink problems are directional duals of each other:
reversing the edges of G converts one to the other. All known methods of solving the
single pair problem at least partially solve a single source or single sink problem.
One way to solve the all pairs problem is to solve n single source problems. For these
reasons the single source problem is fundamental, and we shall concentrate on it,
although in §7.3 we shall study the all pairs problem.

In order to devise algorithms for finding shortest paths, we need to know some of
their properties. The following theorem characterizes the presence and form of
shortest paths:

THEOREM 7.1. Let s and t be vertices such that t is reachable from s. There is a
shortest path from s to t if and only if no path from s to t contains a cycle of
negative length. (We call such a cycle a negative cycle.) If there is any shortest path
from s to t, there is one that is simple.

Proof. If some path from s to t contains a negative cycle, we can produce an
arbitrarily short path by repeating the cycle enough times. If no path from s to t
contains a negative cycle, we can make any path from s to t simple without
increasing its length by deleting cycles.

In light of Theorem 7.1, we can regard the goal of a shortest-path problem as the
exhibition of either appropriate shortest paths or a negative cycle. (An alternative in
the presence of negative cycles is to ask for shortest simple paths, but finding such a
path for a specified vertex pair is NP-complete [16].)

85
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A compact way to represent the set of shortest paths for a single source s is to use
a shortest-path tree. This is a spanning tree rooted at s each of whose paths is a
shortest path in G. (See Fig. 7.1.)

THEOREM 7.2. G contains shortest paths from a source to all other vertices if and
only ifG contains a shortest-path tree rooted at s.

We shall prove Theorem 7.2 later, by giving an algorithm that finds either a
shortest-path tree or a negative cycle. The heart of the algorithm is the following
characterization of shortest-path trees. If T is a spanning tree with root s and v is
any vertex, we define distance (v) to be the length of the path in T from s to v.

THEOREM 7.3. T is a shortest-path tree if and only if, for every edge [v, w],
distance (v) + length (v, w) distance (w).

Proof. Let T be a spanning tree with root s. If there is an edge [v, w] such that
distance (v) + length (v, w) < distance (w), then the path in T from s to w is not
shortest. Conversely, suppose distance (v) + length (v, w) distance (w) for every
edge [v, w]. Let p be any path from 5 to any vertex v. A proof by induction on the
number of edges in p shows that length (p) distance (v). Hence T is a shortest
path tree.

Theorem 7.3 allows us to test in O(m) time whether a given spanning tree is a
shortest-path tree: We compute distance (v) for every vertex v by processing the
vertices in preorder, and then we test the distance inequality for each edge. The

FlG. 7.1. Shortest-path tree for a graph, (a) Graph, (b) Shortest-path tree rooted at vertex a.
Distances from a are in parentheses.
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theorem also suggests a way to construct shortest-path trees by iterative improve-
ment. For each vertex v, we maintain a tentative distance dist (v) from s to v and a
tentative parent p(v) in the shortest-path tree. We initialize dist (s) = 0, dist (v) = for
v s,p(v) = null for all v, and repeat the following step until dist (v) + length (v, w)
dist (w) for every edge [v, w]:

LABELING STEP (Ford). Select an edge [v, w] such that dist (v) + length (v, w) <
dist (w). Replace dist (w) by dist (v) + length (v, w) and p(w) by v.

Ford [12], [13], discovered this labeling method. Its correctness proof is
surprisingly long but not difficult. We need two lemmas about tentative distances.

LEMMA 7.1. The labeling method maintains the invariant that if dist (v) is finite,
there is a path from s to v of length dist (v).

Proof. By induction on the number of labeling steps.
LEMMA 7.2. If p is any path from s to any vertex v, then length (p) dist (v)

when Ford's method halts.
Proof. By induction on the number of edges in p.
THEOREM 7.4. When the labeling method halts, dist (v) is the length of a shortest

path from s to v if v is reachable from s and dist (v) = otherwise. If there is a
negative cycle reachable from s, the method never halts.

Proof. Immediate from Theorem 7.1 and Lemmas 7.1 and 7.2.
Proving that the method computes a shortest path tree takes three lemmas about

tentative parents.
LEMMA 7.3. The labeling method maintains the invariant that if p(v) null,

dist (p(v)) + length (p(v), v) dist (v), with equality when the method halts.
Proof. By induction on the number of labeling steps.
LEMMA 7.4. The labeling method maintains the invariant that either the edges

[p(v), v] for v such that p(v) null form a tree rooted at s spanning the vertices v
such that dist (v) < , or there is a vertex v such that pk(f) = vfor some k.

Proof. A vertex v s has p(v) null if and only if dist (v) < . If dist (v) <
and p(v) / null then dist (p(v)) < . Thus if we start at any vertex v such that
dist (v) < and follow tentative parent pointers, we either reach s and are unable to
continue (p(s) = null) or we repeat a vertex. This gives the lemma.

LEMMA 7.5. If at some time during the labeling method pk(v) = v for some
vertex v and integer k, then the corresponding cycle in G is negative.

Proof. Suppose applying the labeling step to edge [x, y] creates a cycle of parent
pointers. Consider the situation that just before the step. We have pk(x) = y for
some k. Summing the inequalities given by Lemma 7.3 for v = p'(x), i E
[0 . . k — 1] and the inequality dist (x) + length ( x , y ) < dist (y), we have

Thus length length which means that the cycle
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FIG. 7.2. Possible vertex transitions in the labeling and scanning method.

of parent pointers created by the labeling step corresponds to a negative cycle of
G.

THEOREM 7.5. When the labeling method halts, the parent pointers define a
shortest-path tree for the subgraph ofG induced by the vertices reachable from s.

Proof. Immediate from Theorem 7.4 and Lemmas 7.3,7.4, and 7.5.
We have not yet discussed termination. By Theorem 7.4, the labeling method fails

to halt if G contains a negative cycle reachable from s. If there is no such negative
cycle, the method will halt, but it may require an exponential number of labeling
steps. (An upper bound of 2m — 1 steps is not too hard to obtain [28].) Instead of
verifying that the general algorithm halts, we shall study efficient refinements of it.

Our first refinement eliminates unnecessary edge examinations. We call this the
labeling and scanning method [17]. The method maintains a partititon of the

FlG. 7.3. The labeling and scanning method. Labeled vertices are starred, (a) Input graph with initial
distances, (b) After scanning vertex a. (c) After scanning vertices c and d. (d) After scanning vertex b.
(e) After rescanning vertices c and d. the method stops.



SHORTEST PATHS 89

vertices into three states: unlabeled, labeled and scanned. The labeled and scanned
vertices are exactly those with finite tentative distance. Figure 7.2 shows the
transitions a vertex can undergo. Initially s is labeled and every other vertex is
unlabeled. The method consists of repeating the following step until there are no
labeled vertices (see Fig. 7.3).

SCANNING STEP. Select a labeled vertex v and scan it, thereby converting it to the
scanned state, by applying the labeling step to each edge [v, w] such that
dist (v) + length (v, w) < dist (w), thereby converting w to the labeled state.

The labeling and scanning method, like the labeling method, is inefficient in
general, but we can make it efficient by choosing a suitable scanning order. In the
next section we shall study three scanning orders appropriate to three different
situations.

7.2. Efficient scanning orders. Let us first consider the case of an acylic graph.
If G is acyclic, an appropriate scanning order is topologicai. We order the vertices
reachable from s so that if [f, H>] is an edge, v appears before w in the order (see
§1.5), and we apply the scanning step once to each vertex in order. (See Fig. 7.4.)
Because the scanning order is topologicai, once a vertex is scanned it never returns
to the labeled state, and one scan of each reachable vertex suffices. The running
time of the algorithm is O(m), including the time for the topologicai ordering. We
can also use topologicai scanning to compute longest paths in an acyclic graph:
negating edge lengths converts longest to shortest paths and vice versa. Solving the
longest path problem on acyclic graphs is an important part of "PERT" analysis
[22].

One scan per vertex also suffices if G has no edge of negative length. Dijkstra [6]
proposed the appropriate scanning order, shortest first: among labeled vertices,
always scan one whose tentative distance is minimum. (See Fig. 7.5.)

FIG. 7.4. Topological scanning, (a) Input graph with initial distances. Vertex a is start vertex. Vertex
b is not reachable from a. Scanning order is a, c, d. (b) After scanning vertex a. (c) After scanning
vertices c and d.
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FIG. 7.5. Dijkstra's algorithm. Labeled vertices are starred, (a) Input graph with initial distances.
(b) After scanning vertex a. (c) After scanning vertices c and d. (d) After scanning vertex e. (e) After
scanning vertices g.fand b. the method stops.

THEOREM 7.6. Suppose every edge has nonnegative length. If scanning is shortest
first, then once a vertex is scanned, dist (v) is the length of a shortest path from s
tov.

Proof. Consider scanning a vertex v. Just before v is scanned, any labeled vertex w
satisfies dist (w) dist (v). An induction on the number of scanning steps using the
nonnegativity of edge lengths shows that any vertex w that becomes labeled during
or after the scanning of v also satisfies dist (w) dist (v). This means that vertices
are scanned in nondecreasing order by distance from s and that a vertex, once
scanned, cannot become labeled.

Dijkstra's shortest-path algorithm is almost identical to Prim's minimum span-
ning tree algorithm (see §6.2); indeed, Dijkstra discussed both algorithms in the
same paper [6]. The program below, which implements Dijkstra's algorithm, differs
only slightly from our implementation of Prim's algorithm. As suggested by
Johnson [18], we store labeled vertices in a d-heap, using siftup to restore heap order
after the key of a vertex is decreased. The major difference between the algorithms
is in the definition of keys; to compute shortest paths we define the key of a vertex to
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be its tentative distance. Input to the program is the vertex set, the source s and, for
each vertex v, the set out (v) of its outgoing edges.

procedure shortestpathtree (set vertices, vertex s);
vertex v; heap h;
for v E vertices dist (v) := ; p(v) ••= null rof;
dist (s) := 0;
h := makeheap ({ });
V := 5;

do v null —*
for [v, w] e out (v):dist (v) + length (v, w) < dist (w)

dist (w) := (v) + /length (v, w);
p(w) =- v;
if w h insert (w, A) | w E h—* siftup(w, h - 1 ( w ) , h) fi

rof;
v := deletemin (h)

od
end shortestpathtree;

real function key (vertex v);
return rfwf (v)

end key;

If we use a J-heap with d = 2 +- m/n~\ , the running time of this implementation
is O(m log(2+m/n)n); the analysis is the same as that at the end of §6.2. If instead we
represent the heap by an unordered set, as Dijkstra did in his original formulation of
the algorithm, the running time is O(n2) independent of the graph's density. If the
edge lengths are small integers, we can use an array to represent the heap and obtain
a running time of O(m + d) and a space bound of O(m + I) where / is the length of
the longest edge and d is the maximum distance from the source to any vertex [4],
[29].

Dijkstra's algorithm can be used in a bidirectional fashion to solve the single-pair
shortest-path problem on graphs with nonnegative edge lengths [24], [26]. An
appropriate variant of the algorithm solves the single source bottleneck path
problem: for each vertex v, find a path from s to t that minimizes the length of the
longest edge [8], [9]. For this problem the algorithm works even if some lengths are
negative. Knuth [21] has generalized the algorithm to the computation of
minimum-cost derivations in context-free languages under a rather general defini-
tion of cost.

The last case of the single source problem that we shall consider is the general
case. In this case a good scanning order is breadth-first: Among labeled vertices,
scan the one least recently labeled. The idea behind this method was discovered by
Moore [23] and independently by Bellman [1]. To implement breadth-first
scanning, we represent the set of labeled vertices as a queue [17]. Such an
implementation raises the question of what to do with a labeled vertex that is
relabeled before it is scanned. A strict interpretation of breadth-first scanning
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FIG. 7.6. Breadth-first scanning, (a) Input graph with initial queue of labeled vertices, (b) After
scanning vertex a. (c) After scanning vertex c. (d) After scanning vertices b and d. (e) After rescanning
vertices c and d, the method stops.

requires that we move such a vertex to the rear of the queue. We shall use a looser
interpretation, leaving such a vertex in its current position on the queue. The
following program implements this version of breadth-first scanning (see Fig. 7.6):

procedure shortestpathtree (set vertices, vertex s);
vertex v\ list queue;
for v E vertices—* dist (v) • = ; p ( v ) = null rof;
dist (s) := 0;
queue = [ s ] ;
do queue [ ]

v •= queue (1); queue : = queue [2 . . ];
for [v, w] E out (v):dist (v) + length (v, w) < dist (w)

dist (w) := dist (v) + length (v, w);
P(W) :- V;

if w queue queue := queue & [w]fi
rof

od
end shortestpathtree;

Note. This program must be able to test vertices for queue membership. A
membership bit for each vertex suffices for this purpose; testing or setting such a bit
takes 0(1) time (see §1.3).

To analyze the running time of this method, we divide its execution into passes in
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a way similar to that used to analyze the round robin minimum spanning tree
algorithm (see §6.3). Pass zero consists of the initial scanning of the source s. For
j > 0, passy consists of the next scanning of all the vertices on the queue at the end of
passj - 1. Each pass requires O(m) time, since during a pass each vertex is scanned
at most once. The following theorem bounds the number of passes.

THEOREM 7.7. If there is no negative cycle reachable from s, then breadth-first
scanning runs in O(nm) time, stopping by the end of pass n - 1. Otherwise the
method never halts.

Proof. We can prove by induction on k that if there is a shortest path from s to v
containing k edges, then by the beginning of pass k dist (v) will be equal to the
length of this path. The theorem then follows from Lemma 7.1 and Theorem
7.1.

Theorem 7.7 implies Theorem 7.2, on the existence of shortest-path trees. To
make breadth-first scanning robust, we must make sure it halts even in the presence
of negative cycles. The easiest way to do this is to count passes. We add two
variables to the program, an integer pass, to count passes, and a vertex last,
indicating the last vertex to be scanned during the current pass. Initially pass = 0
and last = s. After vertex last is scanned, we add one to pass and replace last by the
last vertex on the queue. If pass attains a value of n with the queue nonempty, we
terminate the algorithm and announce the presence of a negative cycle. With pass
counting, breadth-first scanning runs in O(nm) time whether or not there are
negative cycles. Using the next lemma we can locate a negative cycle if one exists.

LEMMA 7.6. If the queue is nonempty at the end of pass n - 1, then pk(v) = vfor
some vertex v and integer k. and by Lemma 7.5 the corresponding cycle in G is
negative.

Proof. Suppose we run the method until a vertex, say w, is scanned in pass n.
Define the pass of a vertex v to be the maximum j such that v is scanned during pass
j. If pass (v) is defined and positive, then p(v) and pass (p(v)) are defined and
pass (p(v)) ^ pass (v) - 1. We have pass (w) = n. Following parent pointers from
w we must eventually repeat a vertex, since there are only n vertices and the pass
decreases by at most one with each step. D

Pass counting works best when the problem graph is unlikely to contain a
negative cycle. If a negative cycle is likely, it may be better to stop the algorithm as
soon as the parent pointers define a cycle. There are two ways to do this: when
processing an edge [v, w] such that dist (v) + length (v, w) < dist (w), we can
either look for w among the ancestors of v in the tentative shortest-path tree, or we
can look for v among the descendants of w in the tree. The former method is easy to
implement using parent pointers but increases the worst-case running time to
O(n2m) [28]. The latter method requires storing extra information about the tree (a
list of the vertices in preorder will do) but if carefully implemented preserves the
O(nm) running time [28].

Some experimental evidence [5] suggests that a hybrid scanning order [25]
combining breadth-first and depth-first scanning (scan the most recently labeled
vertex) performs better than breadth-first scanning in practice, although the worst
case running time of the hybrid method is exponential [20]. The best choice of
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method in practice depends on the graph structure and the nature of the edge
lengths and is generally not clear cut.

7.3. AH pairs. We conclude this chapter with two algorithms for the all pairs
problem. The first, suited for sparse graphs, combines breadth-first scanning and
Dijkstra's algorithm. The second, suited for dense graphs, uses dynamic program-
ming.

If the problem graph G has nonnegative edge lengths, we can solve the all pairs
problem in O(n m log(2+m/n)n) time by using n iterations of Dijkstra's single source
algorithm, one for each possible source. Even if there are negative-length edges, we
can obtain the same time bound by making all the edge lengths nonnegative in a
preprocessing step. Edmonds and Karp [9] defined the appropriate transformation.
First we add to G a new vertex s and a zero-length edge [s, v] for every vertex v in G.
Then for each vertex v we compute the length distance (v) of a shortest path
from s to v in the augmented graph. Using breadth-first scanning this takes O(nm)
time. Finally, we define a new length for each edge [v, w] by length'(v, w) =
length (v, w) -f distance (v) — distance (w).

THEOREM 7.8. For any edge [v, w], length' (v, w) s 0. For every path p from a
vertex s to a vertex t, length' (p) = length (p) + distance (s) - distance (t).

Proof. Theorem 7.3 implies the first part of the theorem. The second part is
immediate by induction on the number of edges in p.

By Theorem 7.8, the edge length transformation makes all edge lengths nonnega-
tive and preserves shortest paths, since it transforms the lengths of all paths from a
given vertex s to a given vertex t by the same amount. Thus we can find shortest
paths for all pairs with respect to the new lengths using n iterations of Dijkstra's
algorithm, and we can apply the inverse transformation to find shortest distances
with respect to the original lengths. With this method the time to solve the all pairs
problem is O(n m log(2+m/n)n), including pre- and postprocessing. On moderately
dense graphs (m = fi(«l+e)), the time is 0(ww/e).

Another way to solve the all pairs problem is to use dynamic programming. Floyd
[11] obtained such a method by generalizing the transitive closure algorithm of
Warshall [30] (see also [10]). Dantzig [3] proposed a variant of Floyd's method.
Both methods run in O(n3) time.

Floyd's algorithm maintains a tentative distance dist (v, w) for every pair of
vertices v and w. The algorithm processes the vertices one at a time, maintaining the
invariant that dist (v, w) is the length of a shortest path from v to w that contains
only processed vertices as intermediate vertices. Initially dist (v, w) equals
length (v, w) if [v, w] is an edge, zero if v = w, infinity otherwise. The algorithm
consists of repeating the following step for each vertex u:

LABELING STEP (Floyd). If dist (u, u) < 0, abort: there is a negative cycle.
Otherwise, for each pair v, w such that dist (v, w) > dist (v, u) + dist (u, w),
replace dist (v, w) by dist ( v , u ) + dist (u, w).

As stated, Floyd's algorithm computes only shortest distances, but we can easily
augment it to compute shortest paths. For each pair of vertices v, w, we maintain a
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tentative parent p(v, w) of w in a shortest-path tree rooted at v. Initially p(v, w) is v
if [f, w] is an edge, null otherwise. When replacing dist (v, w) by dist (v, u) +
dist (w, w), we also replacep(v, w) by p(u, w).

THEOREM 7.9. Floyd's algorithm, augmented as described, computes shortest
distances for all pairs and shortest-path trees for all sources. If the algorithm
aborts because dist (M, u) < 0 for some vertex u, there is a negative cycle v\, v2,
- • - , vk given by v = v k = w ,y ,_ , = p(u, vjfor ie[2..k].

Proof. Suppose that during the algorithm we maintain a path path (v, w) for each
pair of vertices such that dist (v, w) is finite, defined by path (v, w) = [v, w] if [v, w]
is an edge, path (v, w) = [v] if w = p, path (v, w) is undefined otherwise. When
replacing dist (v, w) by dist (v, u) + dist (u, w), we also replace path (v, w) by
(path(v, u) - {u}) & path(u, w). The algorithm maintains the following invar-
iants:

(i) path (v, w) has length dist (v, w);
(ii) path (v, w) is a shortest path from v to w containing only processed vertices

as intermediate vertices;
(iii) path (v, w) is a simple path if v £ w, a simple cycle if v = w;
(iv) path (v, w) = path (v,p(v, w)) & [w].
We can verify the invariants by induction on the number of labeling steps, using

the (crucial) fact that processing a vertex u affects dist (v, w) only if u {v, w}. The
theorem follows.

Floyd's algorithm is so simple that on dense graphs it is likely to be faster by a
constant factor than n iterations of Dijkstra's algorithm, but it has disadvantages
not suffered by the latter method: it needs (n2) storage, and it does not become
appreciably faster as the graph becomes sparser. Floyd's algorithm is a special case
of Jordan elimination [2]. The related method of Gaussian elimination [2], [14],
which takes greater advantage of sparsity, can also be used to find shortest paths.
Gaussian and Jordan elimination have many other applications, including solving
systems of linear equations [2], [14], converting a finite automaton into a regular
expression [19], and doing global flow analysis of computer programs [27]. All
these problems can be treated together in an appropriate general setting [2], [27].

Fredman [15] discovered yet another algorithm for the all pairs problem.
Fredman's algorithm runs in O(n3(log log n/log n) l /3) time, beating O(n3) methods
on dense graphs, but it seems to be too complicated to be practical.
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CHAPTER 8

Network Flows

8.1. Flows, cuts and augmenting paths. A group of network optimization
problems with widespread and diverse applications are the network flow problems.
Let G = [ K E ] be a directed graph with two distinguished vertices, a source s and a
sink t, and a positive capacity cap (v, w) on every edge [v, w]. For convenience we
define cap (v, w) = 0 if [v, w] is not an edge. A flow on G is a real-valued function/
on vertex pairs having the following three properties:

(i) Skew symmetry. f(v , w) = f (w, v). If f(v, w) > 0, we say there is a flow
from v to w.

(ii) Capacity constraint. f(v, w) s cap (v, w). Jf [f, w] is an edge such that
f(v, w) = cap (v, w), we say the flow saturates [v, w].

( i i i ) F/o>v conservation. For every vertex v other than 5 and /, n/(*', w) = 0.
The value\f\of a flow / is the net flow out of the source, v f(s, v). The

maximum flow problem is that of finding a flow of maximum value, called a
maximum flow. This problem has a rich and elegant theory and many applications
both in operations research and in combinatorics [9], [16], [19]. A series of faster
and faster algorithms have been devised for the problem. (See Fig. 8.1 .) The theory
of network flows is an outgrowth of linear programming [16], [18] originally
developed by Ford and Fulkerson, who wrote a classic book on the subject [9]. We
shall begin our study by reviewing their basic results.

As in the minimum spanning tree problem^ a key concept is that of a cut. In
considering network flows, we define a cut X, A' to be a partition of the vertex set V
into two parts X and^Y = V — X such that X contains s and X contains /. The
capacity of a cut X, X is cap (X, X) = Z^x caP (v, w)- A cut of minimum
capacity is a minimum cut. If /is a flow and X, X is a cut, the flow across the cut is

LEMMA 8.1. For any flow / the flow across any cut X, X is equal to the flow
value.

Proof.

since X^-,*. wf(v, H>) = |/| by flow conservation and YLVex,wtxf(v, w) = 0 by skew
symmetry.

By the capacity constraint, the flow across any cut cannot exceed the capacity of
the cut. Thus the value of a maximum flow is no greater than the capacity of a
minimum cut. The max-flow min-cut theorem states that these two numbers are
equal. To prove this theorem, we need several concepts. The residual capacity for a
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FIG. 8.1. History of maximum flow algorithms.

flow/is the function on vertex pairs given by res (v, w) = cap (v, w) - f(v, w). We
can push up to res (v, w) additional units of flow from v to w by increasing/(f, w)
and correspondingly decreasing/(w, v). The residual graph R for a flow f is the
graph with vertex set V, source 5, sink t, and an edge [v, w] of capacity res (v, w) for
every pair v, w such that res (v, w) > 0. (See Fig. 8.2.) An augmenting path for/is a
path p from s to t in R. The residual capacity of p, denoted by res (P), is the
minimum value of res (v, w) for [v, w] an edge of p. We can increase the value of/

FIG. 8.2. Residual graph for a flow, (a) Graph with flow. First number on an edge is its capacity,
second is its flow. Edges [s, a] and [a, d] are saturated, (b) Residual graph. Path [s, b, d, a, r, t] is
augmenting, of residual capacity 1.
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by any amount A up to res (p) by increasing the flow on every edge oJ p by A. The
following lemma gives a more quantitative version of this observation.

Note. Whenever we change f(v, w) we must change /(w, v) by a corresponding
amount to maintain skew symmetry; we shall generally omit explicit mention of
this. D

LEMMA 8.2. Let f be any flow andf* a maximum flow on G. If R is the residual
graph for f, then the value of a maximum flow on R is \f* \-\f\.

Proof. For any flow f on R, define 4- f' by (/ + /') (v, w) = f(v, w) + f'(v, w).
Then / + /' is a flow on G of value |/| + |/'|, which implies \f'\s \f*\- \f\.
Similarly the function f* -fdefined by (/* — /) (v, w) =f*(y, w) - f(y, w ) i s a
flow on R of value |/* | - |/| and is thus a maximum flow on R. D

THEOREM 8.1 (max-flow min-cut theorem) [5], [8]. The following conditions are
equivalent:

(i) fis a maximum flow;
(ii) there is no augmenting path for f;

(iii) |/| = cap (A; X)for some cut X, X.
Proof, (i) implies (ii). If there is an augmenting path p for/then we can increase

the flow by increasing the flow along p.
(ii) implies (iii). Suppose there is no augmenting path for f_Let X be the set of

vertices reachable from s in the residual graph R for G and let X = V — X. Then X,
A' is a cut, and

since v c X, w € X implies [v, w] is not an_edge of R, i.e.,/(t>, w) = cap (v, w)^
(iii) implies (i). Since |/| ^ cap (X, X) for £ny flow /and any cut X, X, \f\ =

cap (X, X) implies/is a maximum flow and X, X is a minimum cut.
Theorem 8.1 gives a way to construct a maximum flow by iterative improvement,

the augmenting path met hod of Ford and Fulkerson: Begin with a flow of zero on all
edges (which we call the zero flow), and repeat the following step until obtaining a
flow without an augmenting path:

AUGMENTING STEP (Ford and Fulkerson). Find an augmenting path p for the
current flow. Increase the value of the flow by pushing res (p) units of flow along p.

Knowing a maximum flow, we can compute a minimum cut as described in the
proof of Theorem 8.1, in O(m) time.

Suppose the edge capacities are integers. Then the augmenting path method
increases the flow value by at least one with each augmentation, and thus computes
a maximum flow f in at most )f | augmenting steps. Furthermore, f*(v, w) is an
integer for every f, w (we call a flow with this property integral). Hence we have the
following theorem:

THEOREM 8.2 (integrality theorem). If all capacities are integers, there is an
integral maximum flow.
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Unfortunately, if the capacities are large integers the value of a maximum flow
may be large, and the augmenting path method may make many augmentations.
(See Fig. 8.3.) Furthermore, if the capacities are irrational the method may not
halt, and although successive flow values converge they need not converge to the
value of a maximum flow [9]. Thus if the method is to be efficient we must select
augmenting paths carefully. The next lemma suggests that this may be possible.

LEMMA 8.3. Starting from the zero flow, there is a way to construct a maximum
flow in at most m steps, each of which increases the flow along a single path in the
original graph (by an amount that is not necessarily maximum; see Fig. 8.4).

Proof. Let f be a maximum flow. Let G* be the subgraph of G induced by the
edges [v, w] such that f(f, w) > 0. Initialize i to one and repeat the following step
until t is not reachable from s in G*:

PATHFINDING STEP. Find a path pi, from s to in G*. Let A, be the minimum of
f*(v, w) for [v, w] an edge ofp i. For every edge [v, w] onpi,, decrease/*(v, w} by A,
and delete [v, w] from G* if its flow is now zero. Increase / by one.

Each pathfinding step deletes at least one edge from G*; thus this algorithm halts
after at most m steps, having reduced/* to a flow of value zero. (There may still be
cycles of flow.) Beginning with the zero flow and successively pushing A, units of
flow along PI, A2 units along /p2, • • • produces a maximum flow in at most m
steps.

A natural way to select augmenting paths is to always augment along a path of
maximum residual capacity, as suggested by Edmonds and Karp [4]. Lemmas 8.2
and 8.3 allow us to analyze this method, which we call maximum capacity
augmentation.

THEOREM 8.3. Maximum capacity augmentation produces successive flow
values that converge to the value of a maximum flow [20]. If the capacities are
integers the method finds a maximum flow in O(m log c) augmenting steps where c
is the maximum edge capacity.

FIG. 8.3. A bad graph for the augmenting path method, (a) Input graph, (b) After augmentation
along [s, a, b, t]. (c) After augmentation along [s, b, a, t]. After 2 x 106 augmentations, alternately
along [s, a,b,l] and [s, b,a,t], the flow is maximum.
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FIG. 8.4. A maximum flow of value six. Although all capacities are at least two, no single path
carries two units of flow.

Proof. Let /be any flow, and f*, a maximum flow. By Lemma 8.2 there is a flow
/' on the residual graph R of /with value |f* | - |/| . By the proof of Lemma 8.3,
there are at most m augmenting paths whose residual capacities sum to at least f' | ;
thus the maximum capacity augmenting path has residual capacity at least

Consider a sequence of 2m consecutive maximum-capacity augmentations,
starting with flow /. At least one of these must augment the flow by an amount
( f /* I — l/l)/(2w) or less. Thus after 2m or fewer augmentations, the capacity of a
maximum-capacity augmenting path is reduced by a factor of two. Since this
capacity is initially at most c and is at least one unless the flow is maximum, after
O(m log c) maximum-capacity augmentations the flow must be maximum. D

Finding a maximum capacity augmenting path is a version of the bottleneck path
problem mentioned in §7.2. (We take lengths equal to the negatives of the
capacities.) We can find such a path using Dijkstra's algorithm suitably modified.
This method takes O(m log(2+m/n)«) time to find an augmenting path, and the total
time to find a maximum flow is O(m2 (log(2 + m/n)« ) (log c)) if the capacities are
integers. This bound is polynomial in n, m, and the number of bits needed to
represent the capacities, but is still not entirely satisfactory; we would like a bound
which is polynomial in just n and m.

We obtain an algorithm with such a bound by using another way of selecting
augmenting paths, also suggested by Edmonds and Karp [4]: Always choose a
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shortest augmenting path, where we measure the length of a path by the number of
edges it contains. This method is most efficient if we augment along paths of the
same length simultaneously, as suggested by Dinic [3], who obtained his result
independently. In the next two sections we shall develop this method.

8.2. Augmenting by blocking flows. In order to understand Dinic's algorithm we
need two new concepts. A flow/is a blocking flow if every path from s to t contains
a saturated edge. The value of a blocking flow cannot be increased by pushing
additional flow along any path in G, although it may be possible to increase the flow
value by rerouting, i.e. decreasing the flow on some edges and increasing it on
others. Let R be the residual graph for a flow/. The level of a vertex v is the length
of the shortest path from s to v in R. The level graph L for f is the subgraph of R
containing only the vertices reachable from 5 and only the edges [v, w] such that
level (w) = level (v) + 1. L contains every shortest augmenting path and is con-
structible in O(m) time by breadth-first search. (See §1.5.)

Dinic's algorithm consists of beginning with the zero flow and repeating the
following step until / is not in the level graph for the current flow (see Fig. 8.5):

BLOCKING STEP (Dinic). Find a blocking flow/' on the level graph for the current
flow /. Replace / by the flow f + f defined by (/ + /') (v, w) = /(f, w) +
f'(v,w).

THEOREM 8.4. Dinic's algorithm halts after at most n - 1 blocking steps.
Proof. Consider a blocking step. Let/be the current flow, R its residual graph, L

its level graph, R' the residual graph after the step, and level and level' the level
functions for R and R', respectively. Each edge [v, w] in R has level (w)
level (v) + 1. Each edge in R' is either an edge in R or is the reverse of an edge in
L. Thus each edge [v, w] in R' has level (w) level (v) + 1. This means
level' (t) ^ level (t). Suppose level' (/) = level (t). Let p be any shortest path from stot
in R. Then level (w) = level (v) + 1 for every edge [v, w] on p, which means every such
edge is in L. This contradicts the fact that at least one such edge is saturated by the
blocking flow found on L and does not appear in R'. Hence level' (t) > level (t).

Since the level of / is at least one, at most n - 1, and increases by at least one or
becomes undefined with each blocking step, the number of steps is at most
n - 1.

On certain kinds of networks, Dinic's algorithm is even more efficient than
indicated by Theorem 8.4. A unit network is a network in which all edge capacities
are integers and each vertex v other than 5 and t has either a single entering edge, of
capacity one, or a single outgoing edge, of capacity one.

THEOREM 8.5 [7]. On a unit network, Dinic's algorithm halts after at most
2 — 21 blocking steps.

Proof. Consider a blocking step. Let f be the current flow,f* a maximum flow,
and R the residual graph for f Then f* - /is a flow on R. Since/is integral, R is a
unit network, and f* - f is zero or one on every edge. We can partition the edges on
which /* - / is one into a collection of |f* | - |/| paths from s to t and possibly
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FIG. 8.5. Dinic's maximum flow algorithm applied to the graph in Fig. 8.2. (a) Input graph, (b) First
level graph with blocking flow. Levels of vertices are in parentheses, (c) Second level graph with
blocking flow, (d) Third level graph with blocking flow, (e) Final flow. Minimum cut is {s, a, b, d],
\c,t\.

some cycles. Since R is unit, any vertex other than s and t is on at most one of the
paths, which implies that / has an augmenting path of length at most (n - 2)/

After - 21 blocking steps, the shortest augmenting path contains at least
V« - 2 + 1 edges by Theorem 8.4. Thus V« - 2 + 1 (n ~ 2)/( \f* \ - \f\ ) + 1,
i.e. |f* | — |/| — 2. After at most L — 2J additional blocking steps, the
current flow is maximum.

A similar argument shows that if all edge capacities are one, Dinic's algorithm
halts after 0(min{n2/3, m l /2}) blocking steps [7].

Dinic's algorithm takes O(km) time plus the time to find blocking flows on k
acyclic graphs, where k is the number of blocking steps. In the next section we shall
discuss various ways to find blocking flows. We conclude this section with Edmonds
and Karp's analysis of Ford and Fulkerson's augmenting path method when
augmentation is along shortest paths.

THEOREM 8.6. If augmentation is along shortest paths, the augmenting path
method halts after (n — l)m augmenting steps and runs in O(nm2) time.
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Proof. A proof like that of Theorem 8.4 shows that the distance from s to / in the
residual graph never decreases, and that after at most m augmentations along
shortest paths of the same length, the distance from s to t increases by at least one.
Thus there are at most (n - \)m augmenting steps. Finding a shortest augmenting
path takes O(m) time by breadth-first search, giving a total time bound of
O(nm2).

8.3. Finding blocking flows. Suppose G is an acyclic network on which we wish
to find a blocking flow. We shall describe four methods for finding such a flow, each
of which gives a corresponding maximum flow algorithm. The simplest way to find a
blocking flow is the method used by Dinic: Find a path from s to t, push enough flow
along it to saturate an edge, delete all newly saturated edges, and repeat unti l / is not
reachable from s. To find each path we use depth-first search. The following steps
define this method more formally. We begin with the zero flow, go to initialize, and
proceed as directed; p is a path along which flow can be pushed from s to the current
vertex v.

Initialize. Let p = [5] and v = s. Go to advance.
Advance. If there is no edge out of v, go to retreat. Otherwise, let [v, w] bean edge

out of v. Replace p by p & [w] and v by vv. If w t repeat advance; if w = t go
to augment.

Augment. Let A be the minimum of cap (v, vv) - f(v, vv) for [v, vv] an edge of p.
Add A to the flow of every edge on p, delete from G all newly saturated edges,
and go to initialize.

Retreat. If v = s halt. Otherwise, let [u, v] be the last edge on p. Delete v from p
and [M, v] from G, replace v by w, and go to advance.

THEOREM 8.7. Dime's algorithm correctly finds a blocking flow in O(nm) time
and a maximum/low in O(n2m) time.

Proof. The algorithm deletes an edge [v, vv] from G only if [v, w] is saturated or
every path from w to / contains a saturated edge. It follows that the algorithm
constructs a blocking flow. Each initialize, advance, or retreat step takes O( 1) time;
each augment takes O(n) time. Since each augment or retreat deletes an edge, there
are at most m such steps. There are at most m + 1 initialize steps since each but the
first follows an advance. At most n — 1 advance steps precede an augment or
retreat;thus there are at most (n - \)m advance steps. Combining these estimates,
we see that the algorithm finds a blocking flow in O(nm) time. The O(n2m) time
bound for a maximum flow follows from Theorem 8.4.

THEOREM 8.8 [7]. On a unit network, Dime's algorithm finds a blocking flow in
O(m) time and a maximum/low in O( n m) time.

Proof. An augment step takes O(k) time, where k is the length of the augmenting
path p. On a unit network, such a step saturates and deletes at least (k - l ) /2
edges. Thus the total time for augment steps is O(m). An edge added to p by an
advance is either deleted from p by a retreat or has its flow increased by an
augment; thus there are O(m) advance steps. Combining estimates, we get a total
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time of O(m) to find a blocking flow. Theorem 8.5 gives the O( nm) time bound for
a maximum flow.

On a network all of whose edge capacities are one, Dinic's algorithm finds a
maximum flow in O(min{n2/3m, m3/2\) time [7].

On general networks Dinic's blocking flow method saturates only one edge at a
time in the worst case, spending O(n) time per edge saturated. On dense graphs
there are faster methods that, in effect, saturate one vertex at a time and have an
O(n2) running time. Karzanov [14] discovered the first such method. His original
algorithm, as well as more recent variants [2], [10], [22], are rather complicated,
but there is a simpler version [25] that we shall describe here. We call this the wave
method. To present the method we need the concept of a preflow.

A preflow f is a skew symmetric function on vertex pairs that satisfies the
capacity constraint and has a nonnegative net flow A/(f) into every vertex v other
than s and /, where we define A/(v) = f(w, v). A vertex v is balanced if A/(v) = 0
and unbalanced if A/(v) > 0. The preflow is blocking if it saturates an edge on every
path from s to t. The wave method finds a blocking preflow and gradually converts it
into a blocking flow by balancing vertices, in successive forward and backward
passes over the graph.

Each vertex is in one of two states: unblocked or blocked. An unblocked vertex
can become blocked but not vice versa. We balance an unbalanced vertex v by
increasing the outgoing flow if v is unblocked and decreasing the incoming flow if v
is blocked. More precisely, we balance an unblocked vertex v by repeating the
following step until A/(v) = 0 (the balancing succeeds) or there is no unsaturated
edge [v, w] such that w is unblocked (the balancing fails):

INCREASING STEP. Let [v, w] be an unsaturated edge such that w is unblocked.
Increasef(v, w) by min {cap (v, w) - f(v, w), A/(f)}.

We balance a blocked vertex v by repeating the following step until A/(v) = 0 (such
a balancing always succeeds):

DECREASING STEP. Let [u, v] be an edge of positive flow. Decrease f (w, v) by
min|/(«,iO,A/(«0}.

To find a blocking flow, we begin with the preflow that saturates every edge out of
s and is zero on all other edges, make s blocked and every other vertex unblocked,
and repeat increase flow followed by decrease flow until there are no unbalanced
vertices. (See Fig. 8.6.)

Increase flow. Scan the vertices other than s and / in topological order (see
Chapter 1 ), balancing each vertex v that is unbalanced and unblocked when it
is scanned; if the balancing fails, make v blocked.

Decrease flow. Scan the vertices other than s and t in reverse topological order,
balancing each vertex that is unbalanced and blocked when it is scanned.

THEOREM 8.9. The wave algorithm correctly computes a blocking flow in O(n2)
time and a maximum flow in O(n3) time.

Proof. The method maintains the invariant that if v is blocked, every path from v
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FlG. 8.6. The wave method of computing a blocking flow, (a) After first flow increase. Vertex d is
blocked, (b) After second flow increase. Vertex c is blocked, (c) After third flow increase. Vertex a is
blocked, (d) Final blocking flow.

to / contains a saturated edge. Since s is blocked initially, every preflow constructed
by the algorithm is blocking. Scanning in topological order during increase flow
guarantees that after such a step there are no unblocked, unbalanced vertices.
Similarly each vertex blocked before a decrease flow step is balanced after the step
and remains balanced during the next increase flow step, if any. Thus each increase
flow step except the last blocks at least one vertex, and the method halts after at
most n - 1 iterations of increase flow and decrease flow, having balanced all
vertices except s and t and thus having produced a blocking flow.

There are at most (n — 2) (n - 1) balancings. The flow on an edge [v, w] first
increases (while w is unblocked), then decreases (while w is blocked). Each
increasing step either saturates an edge or terminates a balancing; each decreasing
step either decreases the flow on an edge to zero or terminates a balancing. Thus
there are at most 2m + (n — 2) (n - 1) increasing and decreasing steps.

To implement the method efficiently we maintain for each vertex v the value of
and a bit indicating whether v is unblocked or blocked. To balance an
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unblocked vertex v, we examine the edges out of v, beginning with the last edge
previously examined, and increase the flow on each edge to which the increasing
step applies, until &f(v) = 0 or we run out of edges (the balancing fails). Balancing
a blocked vertex is similar. With such an implementation the method takes O(n2)
time to find a blocking flow, including the time to topologically order the vertices.
Theorem 8.4 gives the O(n3) time bound for finding a maximum flow.

When using the wave algorithm to find a maximum flow, we can use the layered
structure of the level graphs to find each blocking flow in O(m + k) time, where k is
the number of balancings, eliminating the O(n2) overhead for scanning balanced
vertices [25]. This may give an improvement in practice, though the time bound is
still O(n2) in the worst case.

Malhotra, Kumar and Maheshwari [ 17] suggested another O(n2)-time blocking
flow method that is conceptually very simple. Initially we delete from G every vertex
and edge not on a path from s to t. We maintain for each vertex v the potential
throughput of v, defined by

(To define thruput (s) and thruput (t), we assume the existence of a dummy edge of
infinite capacity from t to s.) To find a blocking flow we repeat the following step
until t is not reachable from s:

SATURATING STEP. Let v be a vertex of minimum potential throughput. Send
thruput (v) units of flow forward from v to t by scanning the vertices in topological
order and backward from v to s by scanning the vertices in reverse topological order.
Update all throughputs, delete all newly saturated edges from G (this includes
either all edges entering or all edges leaving v) and delete all vertices and edges not
on a path from s to /.

Although this method is simple, it has two drawbacks. When actually imple-
mented, it is at least as complicated as the wave method. Furthermore, it preferen-
tially sends flow through narrow bottlenecks, which may cause it to perform many
more augmentations than necessary. For these reasons we prefer the wave method.

A fourth way to find a blocking flow is to saturate one edge at a time as in Dinic's
method, but to reduce the time per edge saturation by using an appropriate data
structure to keep track of the flow. Galil and Naamad [11] and Shiloach [21]
discovered a method of this kind that runs in 0(w(log n)2) time. Sleator and Tarjan
[23], [24] improved the bound to O(m log n), inventing the data structure of
Chapter 5 for this purpose. We conclude this section by describing their method.

Recall that the data structure of Chapter 5 allows us to represent a collection of
vertex-disjoint rooted trees, each of whose vertices has a real-valued cost, under the
following operations, each of which takes O(log n) amortized time:

maketree (v): Create a new tree containing the single vertex v, of cost zero.
findroot (v ): Return the root of the tree containing vertex v.
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findcost (v): Return the pair [w, x], where x is the minimum cost of a vertex on
the tree path from v to findroot (v) and w is the last vertex on this path of cost
x.

addcost (v, x): Add x to the cost of every vertex on the tree path from v to
findroot (v).

link (v, w): Combine the two trees containing vertices v and w by adding the edge
[v, w] (v must be a root),

cut (f): Divide the tree containing vertex v into two trees by deleting the edge out
of v (v must be a nonroot).

To find a blocking flow, we maintain for each vertex v a current edge [v, p(v)] on
which it may be possible to increase the flow. These edges define a collection of
trees. (Some vertices may not have a current edge.) The cost of a vertex v is
cap (v, p(v)) - f(v, p(v)) if v is not a tree root, huge if v is a tree root, where huge is
a constant chosen larger than the sum of all the edge capacities. The following steps
are a reformulation of Dinic's algorithm using the five tree operations. We find a
blocking flow by first executing maketree (v) followed by addcost (v, huge) for all
vertices, then going to advance and proceeding as directed.

Advance. Let v = findroot (s). If there is no edge out of v, go to retreat.
Otherwise, let [v, w] be an edge out of v. Perform addcost (v, cap (v, w) —
huge) followed by link (v, w). Define p(v) to be w. If w t, repeat advance; if
w = /, go to augment.

Augment. Let [v, A] = findcost (s). Perform addcost (s, -A). Go to delete.
Delete. Perform cut (v) followed by addcost (v, huge). Define f(v, p(v)) =

cap (v, p(v)). Delete [v, p(v)] from the graph. Let [v, A] = findcost (s). If
A = 0, repeat delete; otherwise go to advance.

Retreat. If v = s halt. Otherwise, for every edge [u, v], delete [u, v] from the
graph and, if p(u) v, define f(u, v) = 0; if p(u) = v, perform cut (u), let
[w, A] = findcost (u), perform addcost (u, huge - A), and define f(w, v) =
cap (u, v} - A. After deleting all edges [M, v], go to advance.

Once the algorithm halts, we use cut, findcost, and addcost as in retreat to find
the flow on every remaining edge.

THEOREM 8.10. The Sleator-Tarjan algorithm correctly finds a blocking flow in
O(m log n) time and a maximum flow in O(nm log n) time.

Proof. The correctness of the method is immediate. There are O(m) tree
operations, giving a time bound of O(m log n) to find a blocking flow. The time
bound for a maximum flow follows from Theorem 8.4.

It is intriguing to contemplate the possibility of implementing the wave method
using the data structure for cutting and linking trees, thereby obtaining an
algorithm as fast as any known method on both sparse and dense graphs. We leave
this as an open problem; we conjecture that a time bound of O(m log (n2/m)) for
finding a blocking flow can be obtained in this way.

8.4. Minimum cost flows. The idea of augmenting paths extends to a more
general network flow problem. Let G be a network such that each edge [v, w] has a
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cost per unit of flow, cost (v, w), in addition to a capacity. For simplicity we shall
assume that the costs are skew symmetric, i.e. cost (v, w) = - cost (w, v). (One can
obtain the effect of allowing costs that are not skew symmetric by introducing
multiple edges.) The cost of a flow/is cost (/) = ( ,W)>o cost (v, w)f(v, w) = ViW

cost (v, w)f(v, w)/2. A flow is minimum cost if among all flows of the same value it
has minimum cost. The minimum cost flow problem is that of finding a maximum
flow of minimum cost.

We define the cost of a path to be the sum of its edge costs and the residual graph
R for a flow/exactly as we did in §8.1, with the extension that cost (v, w) is the
same on R as on G. The following two theorems justify two related algorithms for
solving the minimum cost flow problem.

THEOREM 8.11. A flow fis minimum cost if and only if its residual graph R has
no negative cost cycle.

Proof. If R contains a negative cost cycle, then we can reduce the cost of /
without changing its value by pushing flow around the cycle. Conversely, suppose /
does not have minimum cost. Let/* be a minimum cost flow of the same value as/
Then f * - /is a flow on R of value zero and negative cost. The flow/* - /can be
partitioned into a sum of flows on cycles in a way analogous to that used in the proof
of Lemma 8.3. At least one of these cycles must have negative cost.

THEOREM 8.12 [1], [12], [13]. If f is a minimum-cost flow, then any flow
obtained from f by augmenting along an augmenting path of minimum cost is also
a minimum-cost flow.

Proof. Let p be an augmenting path of minimum cost for flow / and let /' be
obtained from/by augmenting along p. Suppose f is not minimum. Let R be the
residual graph for/ By Theorem 8.11 there is a negative cost cycle, say c, in the
residual graph for/'. Cycle c consists of edges in R and one or more edges whose
reversals are on p. Let p © c be the set of edges on p or on c except for those
occurring on p and reversed on c. The cost of p © c is cost (p) + cost (c) < cost (p).
Furthermore, p ® c can be partitioned into a path from s to / and a collection of
cycles. By Theorem 8.11 all the cycles must have nonnegative cost; thus the path is
an augmenting path of cost less than /?. This contradiction implies the
theorem.

Theorem 8.11 justifies the cost reduction method of finding a minimum cost
maximum flow [15]: We begin with a maximum flow, push as much flow as possible
along a negative cost cycle in the residual graph, and repeat until there are no
negative cycles in the residual graph. Theorem 8.12 justifies an alternative method
that works if G has no cycles of negative cost: we find a maximum flow by the
augmenting path method, always augmenting along a minimum cost path. (The
lack of negative cycles means that the zero flow is minimum cost.) Both of these
algorithms are quite practical; unfortunately, neither runs in polynomial time even
for integer capacities [27]. For general costs the cost reduction algorithm need not
even terminate [26], although for general costs and capacities minimum cost
augmentation will terminate if we break ties among augmenting paths of the same
cost by choosing a path of fewest edges [4].

Let us consider the case of integer capacities. There are a finite number of
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integral flows, and since the cost reduction method maintains integrality it will
eventually halt with a minimum cost maximum flow. This means that the integral-
ity theorem (Theorem 8.2) holds for minimum cost flows. If G contains no negative
cost cycles then minimum cost augmentation will compute a minimum cost
maximum flow f* in at most|f* | augmentations. Minimum cost augmentation has
another useful property:

LEMMA 8.4. With minimum cost augmentation, successive augmenting paths
have nondecreasing cost.

Proof. Let/be a minimum cost flow and R, its residual graph. For any vertex v,
let cost (v) be the minimum cost of a path in R from s to v. Then for any edge [v, w]
in R, cost (v) + cost (v, w) ^ cost (w), with equality if [v, w] is on a minimum cost
path from s to w. If we augment along a minimum cost path, the only edges in the
new residual graph R' that are not in R are of the form [w, v] with [v, w] in R and
cost (w, f) = — cost (v, w) = cost (v) - cost (w). A proof by induction on the
number of edges on a minimum cost path from s to v shows that cost' (v) cost (v),
where cost' is the cost function on R'.

We can compute successive minimum cost augmenting paths using any single
source shortest-path algorithm (see Chapter 7). By transforming the edge costs
after each augmentation, we can keep the costs nonnegative and thus use Dijkstra's
algorithm to find augmenting paths. Edmonds and Karp [4] defined the appropriate
transformation, which we used in §7.3 to help solve the all pairs shortest-path
problem.

To find a minimum cost augmenting path, we find a shortest-path tree rooted at s,
defining the length of an edge to be its cost. We use the path in the tree from s to t as
our augmenting path. After the augmentation, we redefine the cost of an edge [v, w]
in G to be cost' (v, w) = cost (v, w) + cost (v) — cost (w), where cost (v) is the cost
of a minimum cost path from s to v. The new edge costs are nonnegative.
Furthermore, if [v, w] is an edge on the augmenting path, both [v, w] and [w, v]
(which will appear in the new residential graph) have a transformed cost of zero.
This method gives us the following theorem:

THEOREM 8.13. On a graph G with integer capacities and no negative cycles,
minimum cost augmentation will find a minimum cost maximum flow f* in
O(nm + m\f*\log(2+m/n)«) time. IfG is acyclic or has nonnegative edge costs, the
time bound is O(m \f* \ log(2+m/n)«).

Proof. Using Dijkstra's algorithm to find augmenting paths and transforming the
costs after each augmentation, the time for the second and successive augmenta-
tions is O(m log(2+m/n)«) per augmentation. Since the initial edge costs are not
necessarily nonnegative, we must use breadth-first scanning, with an O(nm)
running time, for the first augmentation. We can reduce the time for the first
augmentation to O(m log(2+m/n)n) using Dijkstra's algorithm if the initial costs are
nonnegative, or to O(m) using topological scanning if G is acyclic.

There is still much to be learned about the minimum cost flow problem. Edmonds
and Karp [4] developed a "scaling" method that finds a minimum cost maximum
flow /* in a time bound polynomial in n, m, and log (/* |, assuming integer
capacities, but this method has not received much attention in practice. The
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important question of whether there is an algorithm with a running time polynomial
in n and m for general capacities and costs is open. Further information on network
flows can be found in the books of Lawler [16] and Papadimitriou and Steiglitz
[18].
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CHAPTER 9

Matchings

9.1. Bipartite matchings and network flows. The last network optimization
problem we shall study has close connections with the maximum flow problem. Let
G = [ V, E] be an undirected graph each of whose edges has a real-valued weight,
denoted by weight (v, w). A matching M on G is a set of edges no two of which have
a common vertex. The size \ M \ of M is the number of edges it contains; the weight of
M is the sum of its edge weights. The maximum matching problem is that of finding
a matching of maximum size or weight. We shall distinguish four versions of this
problem, depending on whether we want to maximize size or weight (unweighted
versus weighted matching) and whether G is bipartite or not (bipartite versus
nonbipartite matching). The weighted bipartite matching problem is commonly
called the assignment problem; one application is the assignment of people to tasks,
where the weight of an edge {x, y\ represents the benefit of assigning person x to
task y.

Bipartite matching problems can be viewed as a special case of network flow
problems [8]. Suppose G is bipartite, with a vertex partition X, Ksuch that every
edge has one end in X and the other in Y. We shall denote a typical edge by {x, y\
with x G X and y E Y. Let s and t be two new vertices. Construct a graph G' with
vertex set V u {s, t}, source s, sink /, and capacity-one edges [s, x] of cost zero for
every x c- X, [y, t] of cost zero for every y c K, and [jt, y] of cost -weight (x, y) for
every U, y} c E. (See Fig. 9.1.) G' is a unit network as defined in Chapter 8.

An integral flow/on G'defines a matching on G of size |/| and weight — c o s t ( f )
given by the set of edges {x y} such that [x, y] has flow one. Conversely a matching
M on G defines a flow of value | M\ and cost —weight(M) that is one on each path
[s, x], [ x , y ] , [y, t] such that {x,y\ e M. This means that we can solve a matching
problem on G by solving a flow problem on G'.

Suppose we want a maximum size matching. Any integral maximum flow on G'
gives a maximum size matching on G. We can find such a flow in O( ) time
using Dinic's algorithm, since G' is unit (see Theorem 8.8). Thus we have an
O( )-time algorithm for unweighted bipartite matching. This algorithm can be
translated into the terminology of alternating paths (which we shall develop in the
next section), and it was originally discovered in this form by Hopcroft and Karp
[13]. Even and Tarjan [7] noted the connection with Dinic's algorithm.

Suppose we want a maximum weight matching. Since G' is acyclic, it has no
negative cost cycles, and we can apply minimum cost augmentation to G' (see §8.4).
Starting with the zero flow, this method will produce a sequence of at most n/2
minimum cost flows of increasing value, the last of which is a minimum cost
maximum flow. Because successive augmenting paths have nondecreasing cost
(Lemma 8.4), if we stop the algorithm just after the last augmentation along a path

113
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FIG. 9.1. Transformation of a bipartite matching problem to a network flow problem, (a) Bipartite
graph defining a weighted matching problem, (b) Corresponding network. Numbers on edges are costs;
all capacities are one.

of negative cost we will have a flow corresponding to a maximum weight matching.
As implemented in §8.4, minimum cost augmentation solves the weighted bipartite
matching problem in O(n m log(2+m/n)«) time. This method, too, can be translated
into the terminology of alternating paths, and it was discovered in this form by Kuhn
[17], who named it the Hungarian method in recognition of Konig [15], [16] and
Egervary's [5] work on maximum matching, which among other results produced
the Konig-Egervary theorem. This theorem is the special case of the max-flow
min-cut theorem for unweighted bipartite matching: the maximum size of a
bipartite matching is equal to the minimum size of a vertex set containing at least
one vertex of every edge.

9.2. Alternating paths. Nonbipartite matching is more complicated than bipar-
tite matching. The idea of augmenting paths carries over from network flow theory,
but to get efficient algorithms we need another idea, contributed by Edmonds in a
paper with a flowery title [3]. In this section we shall develop the properties of
augmenting paths in the setting of matching theory.

Let M be a matching. An edge in M is a matching edge; every edge not in M is
free. A vertex is matched if it is incident to a matching edge and free otherwise. An
alternating path or cycle is a simple path or cycle whose edges are alternately
matching and free. The length of an alternating path or cycle is the number of edges
it contains; its weight is the total weight of its free edges minus the weight of its
matching edges. An alternating path is augmenting if both its ends are free vertices.
If M has an augmenting path then M is not of maximum size, since we can increase
its size by one by interchanging matching and free edges along the path. We call this
an augmentation. The following theorem is analogous to Lemma 8.2:
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THEOREM 9.1 [3, 13]. Let M be a matching, M a matching of maximum size, and
k = | M| — \M\. Then M has a set of k vertex-disjoint augmenting paths, at least
one of length at most_njk — \.

Proof. Let M © M be the symmetric difference of M and M, the set of edges in
M or [n_ M but not in both. Every vertex is adjacent to at most two edges of
M © A/; thus the subgraph of G induced by M © M consists of a collection_of
paths arid even-length cycles that are alternating with respect to M (and to M ).
M © M contains exactly k more edges in M than in M; thus it contains at least k
paths that begin and end with an edge of M . These paths are vertex-disjoint and
augmenting for A/; at least one has length at most n/k — 1.

Berge [2] and Norman and Rabin [20] proved a weaker form of Theorem 9.1: A
matching is of maximum size if and only if it has no augmenting path. We can
construct a maximum size matching by beginning with the empty matching and
repeatedly performing augmentations until there are no augmenting paths; this
takes at most n/2 augmentations. We call this the augmenting path method for
maximum matching. Before discussing how to find augmenting paths, let us obtain
a result for weighted matchings analogous to Theorem 8.12.

THEOREM 9.2. Let M be a matching of maximum weight among matchings of
size | A/1, let p be an augmenting path for M of maximum weight, and let M' be the
matching formed by augmenting M using p. Then M' is of maximum weight among
matchings ofsize\ M\ + 1.

Proof. Let M be a matching of maximum weight among matchings of size
| M/ + 1. Considerjhe symmetric difference M © A/. Define the weight of a path
or cycle in M © A/ with respect to A/. Any cycle or even-length path in M © M
must have weight_zero; a cycle or path expositive or negative weight contradicts the
choice of A/ or A/, respectively. M © A/ contains exactly one more edge in M than
in M; thus we can pair all but one o t h e odd-length paths so that each pair has an
equal number of edges in A/ and in M . Each pair of paths must have total weight
zero; a positive or negative weight pair contradicts the choice of M or A/.
Augmenting M using_the remaining path gives a matching of size | A/| -f 1 and of
the same weight as M. The theorem follows.

Theorem 9.2 implies that the augmenting path method will compute maximum
weight matchings of all possible sizes if we always augment using a maximum
weight augmenting path. The analogue of Lemma 8.4 holds for matchings; namely,
this method will augment along paths of successively decreasing weight. Thus if we
want a maximum weight matching, we can stop after the last augmentation along a
path of positive weight.

9.3. Blossoms. There remains the problem of finding augmenting paths, maxi-
mum weight or otherwise. The natural way to find an augmenting path is to search
from the free vertices, advancing only along alternating paths. If a search from one
free vertex reaches another, we have found an alternating path. This method works
fine for bipartite graphs, but on nonbipartite graphs there is a subtle difficulty: a
vertex can appear on an alternating path in either parity, where we call a vertex even
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FIG. 9.2. A graph in which it is hard to find an augmenting path. If we search from a and allow one
visit per vertex, labeling c and e odd prevents discovery of the augmenting path [a, c, d, f, e, g].
Allowing two visits per vertex may produce the supposed augmenting path [a, c, d. e , f . d, c, b].

if it is an even distance from the starting free vertex and odd otherwise. (Edmonds
[3] called even vertices "outer" and odd vertices "inner".) If during the search we
do not allow two visits to a vertex, one in each parity, we may miss an augmenting
path; if we allow visits in both parities we may generate a supposedly augmenting
path that is not simple. (See Fig. 9.2.)

Such an anomaly can only occur if G contains the configuration shown in Fig. 9.3,
consisting of an alternating path p from a free vertex s to an even vertex v and an
edge from v to another even vertex w on p. We call the odd-length cycle formed by
{t>, w} and the part of/? from w to v a blossom; vertex w is the base of the blossom and
the part of P from .s tow is the stem of the blossom. Edmonds [3] discovered how to

FlG. 9.3. Shrinking a blossom, (a) Blossom defined by path from s to d and cycle [d, e . f , g, h, d].
Vertex d is the base, (b) Shrunken blossom. Augmenting path from s to i ( j ) corresponds to augmenting
path in original graph going around blossom clockwise (counterclockwise).



MATCHINGS 1 1 7

deal with this situation: We shrink the blossom to a single vertex, called a shrunken
blossom, and look for an augmenting path in the shrunken graph G.

In our discussion we shall sometimes not distinguish between the expanded and
shrunken forms of a blossom; the graph being considered will resolve this ambiguity.
The following theorem justifies blossom-shrinking:

THEOREM 9.3. IfG' is formed from G by shrinking a blossom b, then G' contains
an augmenting path if and only ifG does.

Proof (only if). Suppose G' contains an augmenting path p. Ifp avoids b, then p is
an augmenting path in G. If p contains b, either b is a free vertex or p contains the
matching edge incident to b. In either case expansion of the blossom either leaves p
an augmenting path or breaks p into two parts, one of which contains the base of
blossom, that can be reconnected to form an augmenting path by inserting a path
going around the blossom in the appropriate direction from the base (see Fig. 9.3).
Thus G contains an augmenting path. D

The "if" direction of Theorem 9.3 is harder to prove; we shall obtain it by proving
the correctness of an algorithm developed by Edmonds [3] that finds augmenting
paths using blossom-shrinking. The algorithm consists of an exploration of the
graph that shrinks blossoms as they are encountered. The algorithm builds a forest
consisting of trees of alternating paths rooted at the free vertices. For purposes of
the algorithm we replace every undirected edge [v, w\ by a pair of directed edges
[v, w] and [w>, v]. Each vertex is in one of three states: unreached, odd, or even. For
any matched vertex v, we denote by mate (v) the vertex w such that {v, w\ is a
matching edge. For each vertex v the algorithm computes p(v), the parent of v in the
forest. Initially every matched vertex is unreached and every free vertex v is even,
with p(v) = null. The algorithm consists of repeating the following step until an
augmenting path is found or there is no unexamined edge [v, w] with v even (see
Fig. 9.4):

EXAMINE EDGE (Edmonds). Choose an unexamined edge [v, w] with v even and
examine it, applying the appropriate case below:

Case \. w is odd. Do nothing. This case occurs whenever {v, w] is a matching edge
and can also occur if {v, w] is free.

Case 2. w is unreached and matched. Make w odd and mate (w) even; define
p(w) = vandp(mate (w)) = w.

Case 3. w is even and v and w are in different trees. Stop; there is an augmenting
path from the root of the tree containing v to the root of the tree containing w.

Case 4. w is even and v and w are in the same tree. Edge {v, w} forms a blossom.
Let u be the nearest common ancestor of v and w. Condense every vertex that is
a descendant of u and an ancestor of v or w into a blossom b; define p(b) = p(u)
and p(x) = b for each vertex x such that p(x) is condensed into b.

We call this the blossom-shrinking algorithm. A vertex (either an original or a
blossom) is shrunken if it has been condensed into a blossom (and thus no longer
appears in the graph); any odd, even, or shrunken vertex is reached. We regard a
blossom b as containing not only the vertices on the cycle forming b but also all
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FIG. 9.4. Execution of the blossom-shrinking algorithm. Plus denotes an even vertex, minus an odd
vertex. Arrows denote parents, (a) After examining [a, c] (Case 2). (b) After examining [b, a] (Case 4),
[c, d], [<?,/], [ h , i ] , and [g,f] (Case 1). Vertex k = {a, b, c\. (c) After examining [e, h]. Vertex
I = \e,f, h}. (d) After examining [/, g]. Vertex m = \g, i, /}. On examining [j, m] (Case 3), the algorithm
halts with success.

shrunken vertices combined through repeated shrinking to form the blossoms on the
cycle; that is, we treat containment as transitive.

THEOREM 9.4. The blossom-shrinking algorithm succeeds (stops in Case 3) //
and only if there is an augmenting path in the original graph.

Proof. If the algorithm succeeds, there is an augmenting path in the current
shrunken graph. This path can be expanded to an augmenting path in the original
graph by expanding blossoms in the reverse order of their shrinking, reconnecting
the broken parts of the path each time a blossom on the path is expanded, as
described in the proof of Theorem 9.3 (only if).

To prove the converse, we first note several properties of the algorithm. If v is a
reached, matched vertex, then mate (v) is also reached. If v is a shrunken, free
vertex, then v is contained in a free blossom. If the algorithm stops with failure, any
two even or shrunken vertices that were adjacent at some time during the
computation are condensed into a single blossom when the algorithm halts. To
verify this third claim, suppose to the contrary that {v, w} is an edge such that v and
w are both even or shrunken. Without loss of generality suppose v became even or
shrunken after w. Eventually either v and w will be condensed into a common
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blossom, or an edge corresponding to [p, w] in the current shrunken graph will be
examined; such an examination causes v and w to be condensed into a common
blossom.

Suppose the algorithm fails but there is an augmenting path p =
[xo, x • • • , x 2 / + 1 Consider the situation after the algorithm halts.

It suffices to show that jc, is even (or shrunken) for all even i, 0 § / 21. For then
symmetry implies that xi, is even (or shrunken) for all i, 0 g i 21 + 1, a contradic-
tion. Thus let i be the least even index such that :c, is not even or shrunken. Observe
that jt,-_i is not even: / > 0 and Jt,-i is the mate of *,. Further jc/-i is not odd. Since
*,-2 is even, xt-\ is reached, which implies xf-\ is even. Let.j be the smallest index
less than i —1 such that Xj,xj+\, • • • ,Xj-\ are even. All of these vertices are in the
same blossom. But this blossom has two bases: xi-I is the base, since its mate x, is
not in the blossom; xj is the base, since its mate is not in the blossom (j is even, and
either j > 0 and its mate is Xj-\, or j = 0 and it has no mate). This is impossible,
which implies that the algorithm must halt with success if there is an aug-
menting path.

Theorem 9.4 implies the "if" part of Theorem 9.3. Let G be formed from G by
shrinking a blossom 6. Suppose we run the algorithm in parallel on G and G'. On (7,
we begin by following the path to and around the blossom and shrinking it. On G',
we begin by following the path to b. Now the algorithm is in exactly the same state
on G and G', and it will succeed on G if and only if it succeeds on G'.

We conclude this section with two easy-to-prove observations about the blossom-
shrinking algorithm and its use in the augmenting path method. After performing
an augmentation, we need not immediately expand all blossoms; expansion is
required only when a blossom is on an augmenting path or when it becomes an odd
vertex. Suppose that while searching for an augmenting path we generate a tree
such that every edge [v, w] with v in the tree has been examined and every edge
[H>, v] with v but not w in the tree has v odd. (Edmonds called such a tree
Hungarian.) Then we can permanently delete from the graph all vertices in the tree
and in its blossoms; none will ever again be on an augmenting path, no matter what
augmentations occur.

9.4. Algorithms for nonbipartite matching. The augmenting path method, using
blossom-shrinking to find augmenting paths, will find a maximum size matching in
polynomial time. Edmonds claimed an O(n4) time bound, which is easy to obtain;
see the book of Papadimitriou and Steiglitz [21]. Witzgall and Zahn [22] gave a
related algorithm that instead of shrinking blossoms uses a vertex labeling scheme
to keep track of the blossoms implicitly; they did not discuss running time. Balinski
[1] gave a similar algorithm that runs in O(n3) time. Both Gabow [9], [10] and
Lawler [18] discovered how to implement Edmonds's algorithm to run in 0(n3)
time. As Gabow noted, the running time can be reduced to O(nma(m, n)) using the
disjoint set union algorithm discussed in Chapter 2. The linear-time set union
algorithm of Gabow and Tarjan [11] further reduces the running time, to O(nni).
We shall describe how to implement blossom-shrinking to attain the best of these
bounds.

The hard part is to keep track of blossoms. We do this by manipulating only the
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vertices in the original graph. Each vertex v in the current shrunken graph
corresponds to the set of original vertices condensed to form it. At any time during
the running of the algorithm these sets partition the original vertices; we maintain
this partition using the operations makeset, link, and find defined in Chapter 2. We
define the origin of a vertex v in the shrunken graph inductively to be v if v is an
original vertex or the origin of the base of v if v is a blossom. We label the canonical
vertex of each set (see Chapter 2) with the origin of the current vertex correspond-
ing to the set; that is, if v is an original vertex, origin (find (v)) is the origin of the
current vertex into which v has been condensed.

We represent the vertices in the current shrunken graph by their origins. Instead
of modifying the edges of the graph as blossoms are shrunk, we retain the original
edges and use origin and find to convert them into edges in the shrunken graph.
More specifically, let v' = origin (find (v)) for any original vertex v. Then [v', w'] is
the current edge corresponding to original edge [v, w]. Note that if v is unreached or
odd,v = v.

As we explore the graph we generate a spanning forest, which we represent by
defining predecessors of the odd vertices. When examination of an original edge
[v, w] causes an unreached vertex w to become odd, we define pred (w) = v. From
predecessors and mates we can compute parents in the forest as follows: if v is an
origin, its parent p(v) is mate (v) if v is even, pred (v)' if v is odd; we assume that
mate (v) = null if v is a free vertex.

We also compute certain information necessary to construct an augmenting path.
For each odd vertex v condensed into a cycle we define a bridge. Suppose the
examination of an original edge [v, w] causes a blossom to form containing odd
vertex x. We define bridge (x) to be [v, w] if x is an ancestor of v before condensing
or to be [w, v] if jc is an ancestor of w'.

Initialization for each vertex v consists of defining origin (v) = v, executing
makeset (f), and making v even if it is free and unreached if it is matched. To
execute the algorithm we repeat the following step until detecting an augmenting
path or running out of unexamined edges [v, w] such that v' is even (see Fig. 9.5):

EXAMINE EDGE. Choose an unexamined edge [v, w] such that v is even and
examine it, applying the appropriate case below.

Case 1. w' is odd. Do nothing.
Case 2. w' is unreached. Make w' odd and mate (w') even; define pred (w') = v.
Case 3. w' is even and v and w' are in different trees. Stop; there is an augmenting

path.
Case 4. w1 is even, v' / w', and v and w' are in the same tree. A blossom has been

formed. Let u be the nearest common ancestor of v' and w'. For every vertex x
that is a descendant of u and an ancestor of v', perform link (find (u), find (x))
and if x is odd define bridge (x) = [v, w]. For every vertex x that is a
descendant of u and an ancestor of w', perform link (find (M), find (x)) and if x
is odd define bridge (x) = [w, v]. Define origin (find (w)) = u.

To complete the implementation we must fill in a few more details. We need a
way to choose unexamined edges [v, w] such that v' is even. For this purpose we
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FIG. 9.5. Efficient implementation of blossom-shrinking, (a) Labeling of graph in Fig. 9.4. Plus
denotes an even, minus an odd vertex; arrows denote predecessors. Edges next to shrunken odd vertices
are bridges. Blossoms are circled. The origins of k, I. m are a, e, e, respectively, (b) Construction of
augmenting path.

maintain the set of such edges, from which we delete one edge at a time. Initially the
set contains all edges [v, w] such that v is free. When an unreached vertex v becomes
even or an odd vertex v is condensed into a blossom, we add all edges [v, w] to the
set. By varying the examination order we can implement various search strategies.

We also need a way to distinguish between Case 3 and Case 4 and to determine
the set of edges to be condensed into a blossom if Case 4 applies. When examining
an edge [v, w] such that w' is even, we ascend through the forest simultaneously
from v' and from w', computing v0 = v', vv0 = w', t>,, w,, v2, vv2, • • • , where
vi+\ = P(VI) andd wi+\ = P(wi)' We stop when reaching different free vertices from v
and from w (Case 3 applies), or when reaching from w' a vertex u previously reached
from v' or vice versa (Case 4 applies). In the latter case u is the nearest common
ancestor of v and w', and the blossom consists of the vertices vO, f,, • • • , v}, = u and
WQ, W], • • • ,wk = u. The number of vertices visited by this process is O(n) in Case
3, at most twice the number of vertices on the cycle defining the blossom in Case 4.

The total number of vertices on all blossom cycles is at most 2n - 2, since there
are at most n - 1 blossoms and shrinking a blossom of k vertices reduces the
number of vertices in the graph by k - 1. A simple analysis shows that the disjoint
set operations, of which there are n makeset, at most n - 1 link and O(m) find
operations, dominate the running time of the algorithm. If we use the data structure
of Chapter 2 to implement makeset, link and find, the time to detect an augmenting
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path is O(ma(m, )). The Gabow-Tarjan set union algorithm [11] is also usable
and reduces the running time to O(m).

There remains the problem of constructing an augmenting path once one is
detected. Suppose the algorithm stops in Case 3, having found an edge [v, w] such
that v' and w' are even and in different trees. Let x be the root of the tree containing
v' and y the root of the tree containing w'; the algorithm determines x and y in the
process of detecting an augmenting path. Then reverse (path (v, x)) & path (w, y) is
an augmenting path, where reverse reverses a list (see Chapter 1) and path is
defined recursively as follows (see Fig. 9.5):

The function path (v, w) defines an even-length alternating path from v to w
beginning with a matching edge, under the assumption that at some time during the
running of the blossom-shrinking algorithm v' is a descendant of w in the forest. An
induction on the number of blossoms shrunk verifies that path is correct. The time
required to compute path (v, w) is proportional to the length of the list returned,
since with an appropriate implementation of lists we can perform concatenation and
reversal in 0(1) time (see 1.3). With this method the time needed to construct an
augmenting path is O(n), and the time to find a maximum size matching is either
O(nm (m, n)) or O(nm) depending on the disjoint set implementation.

This algorithm is not the last word on unweighted nonbipartite matching. Even
and Kariv [6], [14], in a remarkable tour-de-force, managed to generalize the
Hopcroft-Karp bipartite matching algorithm by including blossom-shrinking.
Their algorithm, though complicated, runs in O(min \n2 5, m log log «}) time.
Micali and Vazirani [19], using the same ideas, obtained a simplified algorithm
with a running time of O( m). Thus the best time bounds for unweighted bipartite
and nonbipartite matching are the same.

The situation is similar for weighted nonbipartite matching. Edmonds [4]
obtained an 6 O(n4)-time algorithm that combines maximum weight augmentation
(Theorem 9.2) with blossom-shrinking. With Edmonds's method it is necessary to
perserve shrunken blossoms from augmentation to augmentation, only expanding or
shrinking a blossom under certain conditions determined by the search for a
maximum weight augmenting path. Gabow [9] and Lawler [18] independently
discovered how to implement this algorithm to run in O(n3) time. Recently Galil,
Micali, and Gabow [12] reduced the time bound to O(nm\ogn) by using an
extension of meldable heaps (see Chapter 3) to speed up the search for an
augmenting path. Thus the best known time bound for weighted nonbipartite
matching is O(mm { 3, n m log n\. This is slightly larger than the best known bound
for the bipartite case, O(n m log(2+m/fl)«). Curiously, the bound is the same as the
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best known bound for maximum network flow, although the algorithms for the two
problems use different data structures and techniques. We conjecture that there is
an O(n m log («2/w))-time algorithm for weighted bipartite matching.
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